已知橢圓,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),的重心為G,內(nèi)心I,且有(其中為實(shí)數(shù)),橢圓C的離心率e=(   )

A.              B.               C.               D.

 

【答案】

A

【解析】

試題分析:設(shè)P(),∵G為的重心,∴G點(diǎn)坐標(biāo)為 G(),∵,∴IG∥x軸,∴I的縱坐標(biāo)為,在焦點(diǎn)中, =2c,∴=??,又∵I為的內(nèi)心,∴I的縱坐標(biāo)即為內(nèi)切圓半徑,內(nèi)心I把分為三個(gè)底分別為的三邊,高為內(nèi)切圓半徑的小三角形,∴ =,∴?? =?2c? =,∴2c=a,∴橢圓C的離心率e=,故選A

考點(diǎn):本題考查了離心率的求法

點(diǎn)評(píng):求解橢圓中的離心率時(shí)往往用到橢圓的概念,此類問(wèn)題還用到重心坐標(biāo)公式,三角形內(nèi)心的意義及其應(yīng)用

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1,F1、F2分別為它的焦點(diǎn),過(guò)F1的焦點(diǎn)弦CD與x軸成α角(0<α<π),則△F2CD的周長(zhǎng)為(    )

A.10                 B.12

C.20                 D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省金華市東陽(yáng)市南馬高中高二(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知橢圓,F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn),橢圓上一點(diǎn)M到F1的距離是2,N是MF1的中點(diǎn),則|ON|的長(zhǎng)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省南通市海門市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓,F(xiàn)1,F(xiàn)2是左右焦點(diǎn),l是右準(zhǔn)線,若橢圓上存在點(diǎn)P,使|PF1|是P到直線l的距離的2倍,則橢圓離心率的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年底江蘇省連云港市贛榆高級(jí)中學(xué)高三(下)摸底數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓,F(xiàn)1,F(xiàn)2是左右焦點(diǎn),l是右準(zhǔn)線,若橢圓上存在點(diǎn)P,使|PF1|是P到直線l的距離的2倍,則橢圓離心率的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案