17.幾何體三視圖如圖所示,則幾何體的體積為( 。
A.32B.16C.8D.8$\sqrt{2}$

分析 先由三視圖判斷出幾何體的形狀及度量長度,然后利用柱體和錐體體積公式,可計(jì)算答案.

解答 解:由三視圖得,該幾何體為一個(gè)三棱柱切去一個(gè)同底同高的三棱錐所得的組合體,
它們的底面面積S=$\frac{1}{2}$×4×4=8,
高h(yuǎn)=3,
故組合體的體積V=Sh-$\frac{1}{3}$Sh=$\frac{2}{3}$Sh=16,
故選:B.

點(diǎn)評(píng) 解決三視圖的題目,關(guān)鍵是由三視圖判斷出幾何體的形狀及度量長度,然后利用幾何體的面積及體積公式解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是菱形,∠CAF=60°.
(1)求證:BC⊥平面ACEF;
(2)求平面ABF與平面ADF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x-1|-2|x-1|.
(I)作出函數(shù)f(x)的圖象;
(Ⅱ)若不等式$\frac{a}{1-a}$≤f(x)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1( a>b>0)經(jīng)過點(diǎn) (1,$\frac{{\sqrt{3}}}{2}$),離心率為$\frac{{\sqrt{3}}}{2}$,點(diǎn) A 為橢圓 C 的右頂點(diǎn),直線 l 與橢圓相交于不同于點(diǎn) A 的兩個(gè)點(diǎn)P (x1,y1),Q (x2,y2).
(Ⅰ)求橢圓 C 的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0 時(shí),求△OPQ 面積的最大值;
(Ⅲ)若直線 l 的斜率為 2,求證:△APQ 的外接圓恒過一個(gè)異于點(diǎn) A 的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖正方形的曲線C是以1為直徑的半圓,從區(qū)間[0,1]上取1600個(gè)隨機(jī)數(shù)x1,x2,…,x800,y1,y2,…,y800,已知800個(gè)點(diǎn)(x1,y1),(x2,y2),…,(x800,y800)落在陰影部分陰影部分的個(gè)數(shù)為m,則m的估計(jì)值為( 。
A.157B.314C.486D.628

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在圓柱OO1中,矩形ABB1A1是過OO1的截面CC1是圓柱OO1的母線,AB=2,AA1=3,∠CAB=$\frac{π}{3}$.
(1)證明:AC1∥平面COB1;
(2)在圓O所在的平面上,點(diǎn)C關(guān)于直線AB的對(duì)稱點(diǎn)為D,求二面角D-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=ln({x+1})-\frac{ax}{1-x}({a∈R})$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若-1<x<1時(shí),均有f(x)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若命題“?x∈[-1,1],1+2x+a•4x<0”是假命題,則實(shí)數(shù)a的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若c=2,a2=b2+1,則acosB=( 。
A.$\frac{5}{8}$B.$\frac{5}{4}$C.$\frac{5}{2}$D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案