【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a6=0,S4=14.
(1)求an;
(2)將a2 , a3 , a4 , a5去掉一項(xiàng)后,剩下的三項(xiàng)按原來的順序恰為等比數(shù)列{bn}的前三項(xiàng),求數(shù)列{anbn}的前n項(xiàng)和Tn

【答案】
(1)解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,

由a6=0,S4=14,得 ,解得a1=5,d=﹣1.

∴an=5﹣(n﹣1)=6﹣n;


(2)解:由(1)知數(shù)列{an}的前5項(xiàng)為5,4,3,2,1,

∴等比數(shù)列{bn}的前3項(xiàng)為4,2,1,

首項(xiàng)為4,公比為

,

,

數(shù)列{anbn}的前n項(xiàng)和Tn,

(6﹣n) ,

=5 +4 +…+(7﹣n) +(6﹣n) ,

=5﹣[ ]﹣(6﹣n)

=5﹣ =4+(n﹣4)


【解析】(1)利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式結(jié)合已知列式求得首項(xiàng)和公差,則an可求;(2)由(1)知數(shù)列{an}的前5項(xiàng)為5,4,3,2,1,可知:等比數(shù)列{bn}的前3項(xiàng)為4,2,1.首項(xiàng)為4,公比為 ,可得bn . 利用“錯(cuò)位相減法”可得Tn
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,C=2A,cosA= = ,則b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax+ln(x+1)(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;
(3)已知c1>0,且cn+1=f′(cn)(n=1,2,…),在(2)的條件下,證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工人在懸掛如圖所示的一個(gè)正六邊形裝飾品時(shí),需要固定六個(gè)位置上的螺絲,首先隨意擰緊一個(gè)螺絲,接著擰緊距離它最遠(yuǎn)的第二個(gè)螺絲,再隨意擰緊第三個(gè)螺絲,接著擰緊距離第三個(gè)螺絲最遠(yuǎn)的第四個(gè)螺絲,第五個(gè)和第六個(gè)以此類推,則不同的固定方式有種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinωx cosωx﹣sin2ωx+1(ω>0)相鄰兩條對(duì)稱軸之間的距離為
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,且滿足a= ,f(A)=1,求△ABC 面積 S 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個(gè)單位后,得到f(x)的圖象,則(
A.f(x)=﹣sin2x
B.f(x)的圖象關(guān)于x=﹣ 對(duì)稱
C.f( )=
D.f(x)的圖象關(guān)于( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)( ,1),過點(diǎn)A(0,1)的動(dòng)直線l與橢圓C交于M、N兩點(diǎn),當(dāng)直線l過橢圓C的左焦點(diǎn)時(shí),直線l的斜率為
(1)求橢圓C的方程;
(2)是否存在與點(diǎn)A不同的定點(diǎn)B,使得∠ABM=∠ABN恒成立?若存在,求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前 n 項(xiàng)和為 Sn , a1=1,且 an+1=2Sn+1,n∈N
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令 c=log3a2n , bn= ,記數(shù)列{bn}的前 n 項(xiàng)和為Tn , 若對(duì)任意 n∈N , λ<Tn 恒成立,求實(shí)數(shù) λ 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a、b、c是角A、B、C的對(duì)邊,則下列結(jié)論正確的序號(hào)是 . ①若a、b、c成等差數(shù)列,則B= ; ②若c=4,b=2 ,B= ,則△ABC有兩解;
③若B= ,b=1,ac=2 ,則a+c=2+ ; ④若(2c﹣b)cosA=acosB,則A=

查看答案和解析>>

同步練習(xí)冊(cè)答案