給出定義:若m-數(shù)學公式<x≤m+數(shù)學公式(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(數(shù)學公式,數(shù)學公式];②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;③函數(shù)y=f(x)的最小正周期為1;④函數(shù)y=f(x)在(數(shù)學公式,數(shù)學公式]上是增函數(shù);
則其中真命題是________.

①③
分析:根據(jù)讓函數(shù)解析式有意義的原則確定函數(shù)的定義域,然后根據(jù)解析式易用分析法求出函數(shù)的值域;根據(jù)f(2k-x)與f(x)的關(guān)系,可以判斷函數(shù)y=f(x)的圖象是否關(guān)于點(k,0)(k∈Z)對稱;再判斷f(x+1)=f(x)是否成立,可以判斷③的正誤;而由①的結(jié)論,易判斷函數(shù)y=f(x)在 (,]上的單調(diào)性,但要說明④不成立,我們可以舉出一個反例.
解答:①中,令x=m+a,a∈(-]
∴f(x)=x-{x}=a∈(-,]
所以①正確;
②中∵f(2k-x)=(2k-x)-{2k-x}=(-x)-{-x}=f(-x)
∴點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;故②錯;
③中,∵f(x+1)=(x+1)-{x+1}=x-{x}=f(x)
所以周期為1,故③正確;
④中,x=-時,m=-1,
f(-)=
x=時,m=0,
f( )=
所以f(-)=f(
所以④錯誤.
故答案為:①③.
點評:本題考查的知識點是利用函數(shù)的三要素、性質(zhì)判斷命題的真假,我們要根據(jù)定義中給出的函數(shù),結(jié)合求定義域、值域的方法,及對稱性、周期性和單調(diào)性的證明方法,對4個結(jié)論進行驗證.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數(shù)f(x)的定義域為R,值域為[0,
1
2
]
; ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;  ④函數(shù)f(x)是偶函數(shù),
其中正確的命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數(shù)f(x)的定義域為R,值域為[0,
1
2
]
;   ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;    ④函數(shù)f(x)是偶函數(shù),
其中正確的命題是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年北京市石景山區(qū)高三(上)期末數(shù)學試卷(文科)(解析版) 題型:填空題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(,];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(,]上是增函數(shù);
則其中真命題是   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省南昌市蓮塘一中高三(上)12月月考數(shù)學試卷(解析版) 題型:填空題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(,];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(]上是增函數(shù);
則其中真命題是   

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省“黃岡中學、黃石二中、華師一附中、荊州中學、孝感高中、襄樊四中、襄樊五中、鄂南高中”八校高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(,];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(]上是增函數(shù);
則其中真命題是   

查看答案和解析>>

同步練習冊答案