(本題滿(mǎn)分14分,其中第1小題4分,第2小題6分,第3小題4分)

已知函數(shù)

(Ⅰ)求函數(shù)的定義域;

(Ⅱ)若函數(shù)的定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),試討論它的奇偶性和單調(diào)性;

(Ⅲ)在(Ⅱ)的條件下,記的反函數(shù),若關(guān)于x的方程有解,求k的取值范圍。

解:(Ⅰ),所以當(dāng)時(shí),定義域?yàn)?img width=156 height=20 src="http://thumb.zyjl.cn/pic1/0688/139/286139.gif" >;

當(dāng)時(shí),定義域?yàn)?img width=156 height=20 src="http://thumb.zyjl.cn/pic1/0688/141/286141.gif" >。

(Ⅱ)函數(shù)的定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),當(dāng)且僅當(dāng),

此時(shí),。

對(duì)于定義域D=內(nèi)任意x,-xD,

,所以為奇函數(shù);

當(dāng),對(duì)任意,有,

,所以,

內(nèi)單調(diào)遞減;

由于為奇函數(shù),所以在內(nèi)單調(diào)遞減;

(Ⅲ))。

方程,令,且,得,

,所以當(dāng)時(shí)方程有解。▋

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三4月教學(xué)質(zhì)量檢測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分。已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為為其前項(xiàng)和,且滿(mǎn)足

,.?dāng)?shù)列滿(mǎn)足,為數(shù)列的前n項(xiàng)和.

(1)求;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué) 題型:解答題


(本題滿(mǎn)分14分)已知:A、B、C是的內(nèi)角,分別是其對(duì)邊長(zhǎng),向量,且

(1)求角A的大小;(2)若的長(zhǎng)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測(cè)理科數(shù)學(xué)試卷 題型:解答題

(本題滿(mǎn)分14分)本題共有2個(gè)小題,第(1)小題滿(mǎn)分6分,第(2)小題滿(mǎn)分8分.

某地政府為改善居民的住房條件,集中建設(shè)一批經(jīng)適樓房.用了1400萬(wàn)元購(gòu)買(mǎi)了一塊空地,規(guī)劃建設(shè)8幢樓,要求每幢樓的面積和層數(shù)等都一致,已知該經(jīng)適房每幢樓每層建筑面積均為250平方米,第一層建筑費(fèi)用是每平方米3000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加80元.

(1)若該經(jīng)適樓房每幢樓共層,總開(kāi)發(fā)費(fèi)用為萬(wàn)元,求函數(shù)的表達(dá)式(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用);

(2)要使該批經(jīng)適房的每平方米的平均開(kāi)發(fā)費(fèi)用最低,每幢樓應(yīng)建多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測(cè)理科數(shù)學(xué)試卷 題型:解答題

(本題滿(mǎn)分14分)本題共有2個(gè)小題,第(1)小題滿(mǎn)分5分,第(2)小題滿(mǎn)分9分.

設(shè)雙曲線,是它實(shí)軸的兩個(gè)端點(diǎn),是其虛軸的一個(gè)端點(diǎn).已知其一條漸近線的一個(gè)方向向量是,的面積是,為坐標(biāo)原點(diǎn),直線與雙曲線C相交于、兩點(diǎn),且

(1)求雙曲線的方程;

(2)求點(diǎn)的軌跡方程,并指明是何種曲線.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海華師大一附中高三第二學(xué)期開(kāi)學(xué)檢測(cè)試題數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分14分) 本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.

如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中米,梯形的高為米,米,上部是個(gè)半圓,固定點(diǎn)的中點(diǎn).△是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和平行的伸縮橫桿.

(1)設(shè)之間的距離為米,試將三角通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);

(2)當(dāng)之間的距離為多少米時(shí),三角通風(fēng)窗的通風(fēng)面積最大?并求出這個(gè)最大面積。

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案