已知點(diǎn)A、B分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
長(zhǎng)軸的左、右端點(diǎn),點(diǎn)C是橢圓短軸的一個(gè)端點(diǎn),且離心率e=
2
2
.三角形ABC的面積為
2
,動(dòng)直線l:y=kx+m與橢圓于M、N兩點(diǎn).
(I)求橢圓的方程;
(II)若橢圓上存在點(diǎn)P,滿足
OM
+
ON
OP
(O為坐標(biāo)原點(diǎn)),求λ的取值范圍;
(III)在(II)的條件下,當(dāng)λ=
2
時(shí),求△MNO面積.
(I)由題意,
a2+b2
a
=
2
2
1
2
×2a×b=
2
,∴a=
2
,b=1

∴橢圓的方程為
x2
2
+y2=1
;
(II)y=kx+m代入橢圓方程整理可得(1+2k2)x2+4kmx+2m2-2=0.
設(shè)點(diǎn)M、N的坐標(biāo)分別為M(x1,y1)、N(x2,y2)、P(x0,y0),則
x1+x2=-
4km
1+2k2
,x1x2=
2m2-2
1+2k2

∴y1+y2=k(x1+x2)+2m=
2m
1+2k2

(1)當(dāng)m=0時(shí),點(diǎn)M、N關(guān)于原點(diǎn)對(duì)稱,則λ=0.
(2)當(dāng)m≠0時(shí),點(diǎn)M、N不關(guān)于原點(diǎn)對(duì)稱,則λ≠0,
OM
+
ON
OP
,∴(x1,y1)+(x2,y2)=λ(x0,y0),
∴x1+x2=λx0,y1+y2=λy0
∴x0=-
4km
λ(1+2k2)
,y0=
2m
λ(1+2k2)

∵P在橢圓上,
[-
4km
λ(1+2k2)
]2+2[
2m
λ(1+2k2)
]2=2

化簡(jiǎn),得4m2(1+2k2)=λ2(1+2k22
∵1+2k2≠0,
∴有4m22(1+2k2).…①…7分
又∵△=16k2m2-4(1+2k2)(2m2-2)=8(1+2k2-m2),
∴由△>0,得1+2k2>m2.…②…8分
將①、②兩式,∵m≠0,∴λ2<4,
∴-2<λ<2且λ≠0.
綜合(1)、(2)兩種情況,得實(shí)數(shù)λ的取值范圍是-2<λ<2;
(III)由題意,|MN|=
1+k2
|x1-x2|,點(diǎn)O到直線MN的距離d=
|m|
1+k2

∴S△MNO=
1
2
|m||x1-x2|
=
2
|m|
1+2k2-m2
1+2k2

當(dāng)λ=
2
時(shí),由4m22(1+2k2)可得2m2=1+2k2,
S△MNO=
2
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:懷化三模 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖南省懷化市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案