在△ABC中,設
BC
=(2-k,3),
AC
=(2,4)且|
AB
|≤4,k∈Z,則△ABC為直角三角形的概率為
 
考點:古典概型及其概率計算公式
專題:平面向量及應用,概率與統(tǒng)計
分析:分別計算出滿足|
AB
|≤4,k∈Z的基本事件總數(shù)和滿足△ABC為直角三角形的基本事件個數(shù),代入古典概型概率計算公式,可得答案.
解答: 解:∵
BC
=(2-k,3),
AC
=(2,4),
AB
=
AC
-
BC
=(k,1),
∵|
AB
|≤4,
∴k2≤15,
又∵k∈Z,
∴k∈{-3,-2,-1,0,1,2,3},
若△ABC為直角三角形,則
(1)
AB
AC
=2k+4=0,解得k=-2,
(2)
AB
BC
=k2-2k-3=0,解得k=-1,或k=3,
(3)
AC
BC
=2(2-k)+12=0,解得k=8(舍去),
∴△ABC為直角三角形的k的值為-1,-2,3共3個,而基本事件總數(shù)為7,
∴△ABC為直角三角形的概率P=
3
7

故答案為:
3
7
點評:本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

由曲線y=9-x2,直線y=x+7所圍圖形面積S=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四面體ABCD中,AB=CD=3,AC=BD=AD=BC=4
2
,則該四面體外接球體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,
AB
=
a
AC
=
b
,
a
b
<0,S△ABC=
15
4
,|
a
|=3,|
b
|=5,則
a
b
的夾角θ為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準線分別交于A,B兩點,O為坐標原點.若雙曲線的離心率為
2
,△AOB的面積為1,則p=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓錐的側(cè)面積是底面積的3倍,則其母線與軸所成角的大小為
 
(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2log2x-logx
2
6的展開式的常數(shù)項是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

投擲一枚正方體骰子(六個面上分別標有1,2,3,4,5,6),向上的面上的數(shù)字記為a,又n(A)表示集合的元素個數(shù),A={x||x2+ax+3|=1,x∈R},則n(A)=4的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列命題:
①命題“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0”;
②若一個命題的逆命題為真,則它的否命題也一定為真;
③“矩形的兩條對角線相等”的逆命題是真命題;
④“x≠3”是“|x|≠3”的充分條件.
其中錯誤命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案