按照如圖的程序運行,已知輸入x的值為2+log23,則輸出y的值為( 。
A、7B、11C、12D、24
考點:程序框圖
專題:計算題,算法和程序框圖
分析:算法的功能是求y=
2x        x≥4
2x+1     x<4
的值,根據(jù)x的值為2+log23<4,代入計算可得答案.
解答: 解:由程序框圖知:算法的功能是求y=
2x        x≥4
2x+1     x<4
的值,
∵x=2+log23<2+log24=4,
∴y=22+log23+1=23•3=24.
故選:D.
點評:本題考查了選擇結(jié)構(gòu)的程序框圖,根據(jù)框圖流程判斷算法的功能是解答此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的圖象如圖所示,則f(
π
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),動點P(a,b)滿足0≤
OP
OA
≤2且0≤
OP
OB
≤2,則點P到點C的距離大于
1
4
的概率為( 。
A、1-
5
64
π
B、
5
64
π
C、1-
π
16
D、
π
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點分別為F1,F(xiàn)2,點O為坐標(biāo)原點,點P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點A,過F2作直線PQ的垂線,垂足為B,則|OA|與|OB|的長度依次為( 。
A、a,a
B、a,
a2+b2
C、
a
2
,
3a
2
D、
a
2
,a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x<0},B={x|x≤-1或x>1},則A∩(∁RB)=(  )
A、{x|0<x<1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的雙曲線,其右焦點為F(3,0),且F到其中一條漸近線的距離為
5
,則該雙曲線的方程為(  )
A、
x2
4
-
y2
5
=1
B、
x2
4
-
y2
5
=1
C、
x2
2
-
y2
5
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為y2=2px(p>0),點R(1,2)在拋物線C上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點Q(l,1)作直線交拋物線C于不同于R的兩點A,B,若直線AR,BR分別交直線l:y=2x+2于M,N兩點,求|MN|最小時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為
6
3
的橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
與圓C:x2+(y-3)2=4交于A,B兩點,且∠ACB=120°,C在AB上方,如圖所示,
(1)求橢圓E的方程;
(2)是否存在過交點B,斜率存在且不為0的直線l,使得該直線截圓C和橢圓E所得的弦長相等?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某停車場臨時停車按時段收費,收費標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時按1小時計算).現(xiàn)有甲、乙兩人在該場地停車,兩人停車都不超過4小時.
(1)若甲停車1小時以上且不超過2小時的概率為
1
3
,停車付費多于14元的概率為
5
12
,求甲停車付費6元的概率;
(2)若甲、乙兩人每人停車的時長在每個時段的可能性相同,求甲乙二人停車付費之和為28元的概率.

查看答案和解析>>

同步練習(xí)冊答案