已知函數(shù)
(1)求函數(shù)的極值;
(2)設函數(shù)若函數(shù)上恰有兩個不同零點,求實數(shù)的取值范圍.
(1)處取得極小值.(2).

試題分析:(1)求導數(shù),解得函數(shù)的減區(qū)間;解,得函數(shù)的增區(qū)間
確定處取得最小值.
也可以通過“求導數(shù)、求駐點、研究函數(shù)的單調(diào)區(qū)間、確定極值(最值)” .
(2)遵循“求導數(shù)、求駐點、確定函數(shù)的單調(diào)性”明確函數(shù)的單調(diào)區(qū)間.
應用零點存在定理,建立不等式組,解之即得.
試題解析:(1)的定義域是,,得        3分
時,,時,,
所以處取得極小值         6分
(2)
所以,令
所以遞減,在遞增         9分
         11分
所以         13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,證明:;
(2)若對恒成立,求實數(shù)的取值范圍;
(3)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為常數(shù)),在時取得極值.
(1)求實數(shù)的值;
(2)當時,求函數(shù)的最小值;
(3)當時,試比較的大小并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,,且.現(xiàn)給出如下結論:
;②;③;④.
其中正確結論的序號是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

記函數(shù)的導函數(shù)為f¢(x),則f¢(1)的值為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(Ⅰ)當時,求曲線處的切線方程;
(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設函數(shù),若對于,,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存在.請舉例并證明你的結論,如果不存在,請說明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調(diào)區(qū)間;
(III )對于給定的實數(shù)成立.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設球的半徑為時間的函數(shù),若球的體積以均勻速度增長,則球的表面積的增長速度與球半徑的乘積為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-2,2]上是減函數(shù),則b+c的最大值為    .

查看答案和解析>>

同步練習冊答案