在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7n mile以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55n mile處有一個(gè)雷達(dá)觀測(cè)站A,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40 n mile的位置B,經(jīng)過(guò)40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東 (其中)且與點(diǎn)A相距10n mile的位置C.

(I)求該船的行駛速度(單位:n mile /h);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.
(I)船的行駛速度為(海里/小時(shí)).(II)船會(huì)進(jìn)入警戒水域.

試題分析:(I)根據(jù)同角三角函數(shù)的基本關(guān)系式求出,然后利用余弦定理求出BC的值,從而可求出船的行駛速度.
(II)判斷船是否會(huì)進(jìn)入警戒水域,關(guān)鍵是看點(diǎn)E到直線l的距離與半徑7的關(guān)系,因而可求出直線l的方程,以及E點(diǎn)坐標(biāo),然后再根據(jù)點(diǎn)到直線的距離公式得到結(jié)論.
(I)如圖,AB=40,AC=10
由于,所以cos=
由余弦定理得BC=
所以船的行駛速度為(海里/小時(shí)).
(II)解法一  如圖所示,以A為原點(diǎn)建立平面直角坐標(biāo)系,

設(shè)點(diǎn)B、C的坐標(biāo)分別是B(x1,y2), C(x1,y2),
BC與x軸的交點(diǎn)為D.
由題設(shè)有,x1=y1= AB=40,
x2=ACcos,
y2=ACsin
所以過(guò)點(diǎn)B、C的直線l的斜率k=,直線l的方程為y=2x-40.
又點(diǎn)E(0,-55)到直線l的距離d=
所以船會(huì)進(jìn)入警戒水域.
解法二: 如圖所示,設(shè)直線AE與BC的延長(zhǎng)線相交于點(diǎn)Q.
在△ABC中,由余弦定理得,
==.
從而
中,由正弦定理得,AQ=
由于AE=55>40=AQ,所以點(diǎn)Q位于點(diǎn)A和點(diǎn)E之間,且QE=AE-AQ=15.
過(guò)點(diǎn)E作EP BC于點(diǎn)P,則EP為點(diǎn)E到直線BC的距離.
在Rt中,PE=QE·sin
=所以船會(huì)進(jìn)入警戒水域.
點(diǎn)評(píng):掌握正余弦定理及能解決的三角形類(lèi)型是解三角形的前提.第(II)問(wèn)關(guān)鍵是知道如何判斷船是否會(huì)進(jìn)入警戒水域,實(shí)質(zhì)是直線與圓的位置關(guān)系的判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在ΔABC中,,,則__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,,,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
ABC中,BC=,AC=3,sinC="2sinA"
(I)求AB的值:
(II) 求sin的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,若,則的形狀一定是(   )
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,內(nèi)角所對(duì)的邊分別是.若,則△ABC是
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)在中,角的對(duì)邊分別為,且.
①求的值;
②若,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,若,則
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,,則的解的個(gè)數(shù)是 (  )
A.2個(gè)B.1個(gè)C.0個(gè)D.不確定的

查看答案和解析>>

同步練習(xí)冊(cè)答案