π
2
0
 sin2xdx=( 。
A、0
B、
π
4
-
1
2
C、
π
4
D、
π
2
-1
考點:微積分基本定理
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)微積分基本定理計算即可
解答: 解:
π
2
0
sin2xdx=
π
2
0
1-cos2x
2
dx=
1
2
(x-
1
2
 sin2x)
|
π
2
0
=
1
2
π
2
-
1
2
sinπ-0-0)=
π
4
,
故選:C
點評:本題主要考查了微積分基本定理,關(guān)鍵是求出原函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2-2ax+a>0對一切實數(shù)x∈R恒成立,則關(guān)于t的不等式at2+2t-3<1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=-3,a1a2a3=729
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{
1
an
}的前n項和為Tn,證明:Tn≤-
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對某班學(xué)生是更喜歡體育還是更喜歡文娛進(jìn)行調(diào)查,根據(jù)調(diào)查得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表;
(Ⅱ)若要從更愛好文娛和從更愛好體育的學(xué)生中各選一人分別做文體活動協(xié)調(diào)人,求選出的兩人恰好是一男一女的概率;
(Ⅲ)在多大程度上可以認(rèn)為性別與是否更喜歡體育有關(guān)系?參考公式Χ2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C的圓方程是x2+y2-2y+m=0.
(1)如果圓C與直線y=0沒有公共點,求實數(shù)m的取值范圍;
(2)如果圓C過坐標(biāo)原點,直線l過點P(0,a)(0≤a≤2),且與圓C交于A,B兩點,當(dāng)△ABC的面積最大時,求直線l的斜率k關(guān)于a的解析式k(a),并求k(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD.
(1)求證:CD⊥平面PAD;
(2)求證:平面PAB⊥平面PCD;
(3)除了已知和(2)中的兩個平面互相垂直以外,在不添加其它點和線的情況下,圖中還有哪些平面是互相垂直的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=cos(2x-
π
3
)的圖象,可以將函數(shù)y=-sin2x的圖象( 。
A、向左平移
π
12
個單位
B、向右平移
π
12
個單位
C、向左平移
12
個單位
D、向右平移
12
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,解答下列問題:
(1)指出直線AB與CC1的位置關(guān)系; 
(2)求直線AD與BC1所成角的大小;
(3)證明BD1⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各小題中,p是q的充分必要條件的是( 。
①p:m<-2,或m>6;q:x2+mx+m+3有兩個不同的零點;
②p:
f(-x)
f(x)
=1;q:y=f(x)是偶函數(shù);
③p:cosα=cosβ;q:tanα=tanβ;
④p:A∩B=A;q:∁UB⊆∁UA.
A、①②B、②③C、③④D、①④

查看答案和解析>>

同步練習(xí)冊答案