【題目】中, ADBC交于點M,設,以為基底表示

【答案】

【解析】試題分析:由A、M、D三點共線,知;由C、M、B三點共線,知

,所以,所以=

試題解析:

,

因為A、M、D三點共線,所以,即

因為C、M、B三點共線,所以,即

解得,所以

型】解答
結(jié)束】
20

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時的最大值.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況:小于﹣1時大于﹣1而小于1時大于1時,根據(jù)二次函數(shù)求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當時,

②若時,

③若則當時,

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時, 此時

時, 取得最大值為5.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)境監(jiān)測中心監(jiān)測我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機抽取20天的指數(shù)(見下表),將指數(shù)不低于8.5視為當天空氣質(zhì)量優(yōu)良.

天數(shù)

1

2

3

4

5

6

7

8

9

10

空氣質(zhì)量指數(shù)

7.1

8.3

7.3

9.5

8.6

7.7

8.7

8.8

8.7

9.1

天數(shù)

11

12

13

14

15

16

17

18

19

20

空氣質(zhì)量指數(shù)

7.4

8.5

9.7

8.4

9.6

7.6

9.4

8.9

8.3

9.3

(Ⅰ)求從這20天隨機抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},a1=2,a2=6,且滿足=2(n≥2且n∈N+)

(1)證明:新數(shù)列{an+1-an}是等差數(shù)列,并求出an的通項公式

(2)令bn=,設數(shù)列{bn}的前n項和為Sn,證明:S2n-Sn<5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中不正確的是________.(填序號)

①若a∈R,則“<1”是“a>1”的必要不充分條件;

②“pq為真命題”是“pq為真命題”的必要不充分條件;

③若命題p:“x∈R,sin x+cos x”,則p是真命題;

④命題“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實數(shù)a的值;
(2)證明:當a=2時,不等式f(x)≥ ﹣e1x恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時的最大值.

【答案】(1) (2)答案見解析.

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況:小于﹣1時大于﹣1而小于1時大于1時,根據(jù)二次函數(shù)求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當時,

②若時,

③若則當時,

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時, 此時

時, 取得最大值為5.

點睛:二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數(shù)圖象的頂點處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(軸含參數(shù)),區(qū)間固定;(3)軸固定,區(qū)間動(區(qū)間含參數(shù)). 找最值的關(guān)鍵是:(1)圖象的開口方向;(2)對稱軸與區(qū)間的位置關(guān)系;(3)結(jié)合圖象及單調(diào)性確定函數(shù)最值.

型】填空
結(jié)束】
21

【題目】已知兩個不共線的向量的夾角為,且為正實數(shù).

1)若垂直,求

2)若,求的最小值及對應的的值,并指出此時向量的位置關(guān)系.

3)若為銳角,對于正實數(shù),關(guān)于的方程有兩個不同的正實數(shù)解,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,,,,分別是、的中點.

(1)求證:∥平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線, .

(1)求證:對,直線與圓總有兩個不同的交點;

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標原點,則△AOB的面積為( )
A.8
B.4
C.2
D.

查看答案和解析>>

同步練習冊答案