【題目】在中, AD與BC交于點M,設,以、為基底表示
【答案】
【解析】試題分析:由A、M、D三點共線,知;由C、M、B三點共線,知
,所以,所以=.
試題解析:
設,
則
因為A、M、D三點共線,所以,即
又
因為C、M、B三點共線,所以,即
由解得,所以
【題型】解答題
【結(jié)束】
20
【題目】函數(shù)的最小值為.
(1)求;
(2)若,求及此時的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】環(huán)境監(jiān)測中心監(jiān)測我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機抽取20天的指數(shù)(見下表),將指數(shù)不低于8.5視為當天空氣質(zhì)量優(yōu)良.
天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空氣質(zhì)量指數(shù) | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
天數(shù) | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空氣質(zhì)量指數(shù) | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
(Ⅰ)求從這20天隨機抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},a1=2,a2=6,且滿足=2(n≥2且n∈N+)
(1)證明:新數(shù)列{an+1-an}是等差數(shù)列,并求出an的通項公式
(2)令bn=,設數(shù)列{bn}的前n項和為Sn,證明:S2n-Sn<5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中不正確的是________.(填序號)
①若a∈R,則“<1”是“a>1”的必要不充分條件;
②“p∧q為真命題”是“p∨q為真命題”的必要不充分條件;
③若命題p:“x∈R,sin x+cos x≤”,則p是真命題;
④命題“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實數(shù)a的值;
(2)證明:當a=2時,不等式f(x)≥ ﹣e1﹣x恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的最小值為.
(1)求;
(2)若,求及此時的最大值.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系化簡函數(shù)解析式后,分三種情況:①小于﹣1時②大于﹣1而小于1時③大于1時,根據(jù)二次函數(shù)求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.
試題解析:
(1)由
.這里
①若則當時,
②若當時,
③若則當時,
因此
(2)
①若,則有得,矛盾;
②若,則有即或(舍).
時, 此時
當時, 取得最大值為5.
點睛:二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數(shù)圖象的頂點處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(軸含參數(shù)),區(qū)間固定;(3)軸固定,區(qū)間動(區(qū)間含參數(shù)). 找最值的關(guān)鍵是:(1)圖象的開口方向;(2)對稱軸與區(qū)間的位置關(guān)系;(3)結(jié)合圖象及單調(diào)性確定函數(shù)最值.
【題型】填空題
【結(jié)束】
21
【題目】已知兩個不共線的向量的夾角為,且為正實數(shù).
(1)若與垂直,求;
(2)若,求的最小值及對應的的值,并指出此時向量與的位置關(guān)系.
(3)若為銳角,對于正實數(shù),關(guān)于的方程有兩個不同的正實數(shù)解,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標原點,則△AOB的面積為( )
A.8
B.4
C.2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com