【題目】已知命題p:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是(  )

A. x0∈(-1,1),cos x0

B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點(diǎn)”的必要不充分條件

C. x=是曲線(xiàn)f(x)=sin 2x+cos 2x的一條對(duì)稱(chēng)軸

D. 若x∈(0,2),則在曲線(xiàn)f(x)=ex(x-2)上任意一點(diǎn)處的切線(xiàn)的斜率不小于

【答案】C

【解析】

由題意易知p是假命題,故只需q是真命題,逐一判斷選項(xiàng)即可解決.

對(duì)于命題p:函數(shù)f(x)=x2-x= ,則函數(shù)f(x) 上單調(diào)遞減,在 上單調(diào)遞增.∴當(dāng)x=時(shí),f(x)取得最小值,,因此命題p是假命題.若pq是真命題,則命題q必須是真命題.A中,x(-1,1),cos x(cos 1,1],而cos 1>,因此A是假命題;B中,函數(shù)f(x)=x+log2x+m在區(qū)間上單調(diào)遞增,若函數(shù)f(x)在此區(qū)間上有零點(diǎn),則,解得 ,因此“-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點(diǎn)”的充分不必要條件,因此B是假命題;C中,f(x)=sin 2x+cos 2x=,當(dāng)x= 時(shí),,因此x=是曲線(xiàn)y=f(x)的一條對(duì)稱(chēng)軸,C是真命題;D中,f(x)=ex(x-2),f′(x)=exex(x-2)=ex(x-1),當(dāng)x(0,2)時(shí),f′(x)>f′(0)=-1,因此D是假命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長(zhǎng)軸長(zhǎng)為4,過(guò)橢圓的左頂點(diǎn)A作直線(xiàn)l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q.

(1)若直線(xiàn)l的斜率為 ,求 的值;
(2)若 ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點(diǎn)為噴泉,圓心O為AB的中點(diǎn),其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點(diǎn)C處觀賞.

(1)若當(dāng)∠OBC= 時(shí),sin∠BCO= ,求此時(shí)a的值;
(2)設(shè)y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)C處觀賞噴泉時(shí),觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2sinθ,直線(xiàn)l的參數(shù)方程是 (t為參數(shù)).設(shè)直線(xiàn)l與x軸的交點(diǎn)是M,N是曲線(xiàn)C上一動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,以原點(diǎn)O為頂點(diǎn),以y軸為對(duì)稱(chēng)軸的拋物線(xiàn)E的焦點(diǎn)為F(0,1),點(diǎn)M是直線(xiàn)l:y=m(m<0)上任意一點(diǎn),過(guò)點(diǎn)M引拋物線(xiàn)E的兩條切線(xiàn)分別交x軸于點(diǎn)S,T,切點(diǎn)分別為B,A.

(1)求拋物線(xiàn)E的方程;

(2)求證:點(diǎn)S,T在以FM為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的四棱錐P﹣ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點(diǎn), =3

(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 =1(a>b>0)的左、右頂點(diǎn)分別為A,B,焦距為2 ,直線(xiàn)x=﹣a與y=b交于點(diǎn)D,且|BD|=3 ,過(guò)點(diǎn)B作直線(xiàn)l交直線(xiàn)x=﹣a于點(diǎn)M,交橢圓于另一點(diǎn)P.

(1)求橢圓的方程;
(2)證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一次考試成績(jī)的樣本頻率分布直方圖(樣本容量n=200),若成績(jī)不低于60分為及格,則樣本中的及格人數(shù)是( )

A. 6 B. 36 C. 60 D. 120

查看答案和解析>>

同步練習(xí)冊(cè)答案