設(shè)f(x)=(x-1)(x-2)…(x-100),求f′(1).
【答案】分析:先利用乘積函數(shù)的導(dǎo)數(shù)運(yùn)算法則對(duì)函數(shù)進(jìn)行求導(dǎo),注意到導(dǎo)函數(shù)的表達(dá)式從第二項(xiàng)求每一項(xiàng)都有(x-1)因子,就很快能夠求出f′(1).
解答:解:∵f(x)=(x-1)(x-2)…(x-100),
∴f′(x)=(x-2)(x-3)…(x-100)+(x-1)(x-3)…(x-100)+…,
發(fā)現(xiàn)導(dǎo)函數(shù)的表達(dá)式從第二項(xiàng)求每一項(xiàng)都有(x-1)因子
則f′(1)=(-1)(-2)…(-99)=-99。
故答案為-99。
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的運(yùn)算,以及注意數(shù)學(xué)思想方法的挖掘、提煉、總結(jié),以增強(qiáng)分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零實(shí)數(shù),若f(2011)=1則f(2012)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)fx)=xx-1)(x-2)…(x-100),則f′(0)等于( 。

A.100

B.0

C.100×99×98×…×3×2×1

D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)fx)=xx-1)(x-2)…(x-100),則f′(0)等于(  )

A.100

B.0

C.100×99×98×…×3×2×1

D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省溫州市十校聯(lián)合體高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)f(x)是定義在R上的奇函數(shù),g(x)與f(x)的圖象關(guān)于直線x=1對(duì)稱,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)當(dāng)x=1時(shí),f(x)取得極值,證明:對(duì)任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的單調(diào)函數(shù),且當(dāng)x≥1,f(x)≥1時(shí),有f[f(x)]=x,求證:f(x)=x

查看答案和解析>>

同步練習(xí)冊(cè)答案