在空間四邊形ABCD中,E,F(xiàn)分別是AB,BC的中點(diǎn),下列說(shuō)法正確的是


  1. A.
    直線EF與直線AD 相交
  2. B.
    直線EF與直線AD 異面
  3. C.
    直線EF與直線AD 垂直
  4. D.
    直線EF與直線AD 平行
B
分析:作出如圖的空間四邊形,連接AC,BD可得一個(gè)三棱錐,利用三角形中位線的性質(zhì),可證明其EF平行于平面ACD,從而判斷直線EF與直線AD的位置關(guān)系.
解答:解:作出如圖的空間四邊形,
連接AC,BD可得一個(gè)三棱錐,
E,F(xiàn)分別是AB,BC的中點(diǎn),由中位線的性質(zhì)知,
EH∥AC,EF?平面ACD,
∴EF∥平面ACD,AD?平面ACD,且AC與AD相交,
故直線EF與直線AD 異面,
故選B.
點(diǎn)評(píng):本題考查空間中直線與干線之間的位置關(guān)系,解題的關(guān)鍵是掌握空間中直線與直線之間位置關(guān)系的判斷方法,本題涉及到線線平行的證明,中位線的性質(zhì)等要注意這些知識(shí)在應(yīng)用時(shí)的轉(zhuǎn)化方式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、在空間四邊形ABCD的各邊AB,BC,CD,DA上依次取點(diǎn)E,F(xiàn),G,H,若EH、FG所在直線相交于點(diǎn)P,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD的邊AB,BC,CD,DA上分別取E,F(xiàn),G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,連接AC、BD,若△BCD是正三角形,且E為其中心,則
AB
+
1
2
BC
-
3
2
DE
-
AD
化簡(jiǎn)后的結(jié)果為( 。
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點(diǎn).
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問(wèn)在線段BC上是否存在點(diǎn)F,使GF∥平面ADE?若存在,請(qǐng)指出點(diǎn)F在BC上的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn).若AC=BD=a,若四邊形EFGH的面積為
3
8
a2
,則異面直線AC與BD所成的角為( 。
A、30°B、60°
C、120°D、60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案