已知圓的極坐標(biāo)方程為:
⑴將極坐標(biāo)方程化為普通方程;
⑵若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
; ⑵x+y最大值為6,最小值為2.

試題分析:⑴;        ⑵圓的參數(shù)方程為 
所以,那么x+y最大值為6,最小值為2.
點(diǎn)評(píng):中檔題,極坐標(biāo)、參數(shù)方程作為選考內(nèi)容,命題難度也不太大。極坐標(biāo)主要停留在簡(jiǎn)單曲線方程的互化,而參數(shù)方程的應(yīng)用,則顯得更為突出。本題應(yīng)用參數(shù)方程,將求二元函數(shù)的最值問(wèn)題,轉(zhuǎn)化成了三角函數(shù)問(wèn)題,也很好體現(xiàn)了“換元思想”。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與軸的交點(diǎn)是,是曲線上一動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若(x,y)與(ρ,θ)(ρ∈R)分別是點(diǎn)M的直角坐標(biāo)和極坐標(biāo),t表示參數(shù),則下列各組曲線:①θ=和sinθ=;  ②θ=和tanθ=;  ③ρ2-9=0和ρ= 3;
. 其中表示相同曲線的組數(shù)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線I的參數(shù)方程為(t為參數(shù),O < a <),曲線C的極坐標(biāo)方程為
(I)求曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C相交于A ,B兩點(diǎn),當(dāng)a變化時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)
已知在直角坐標(biāo)系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點(diǎn)是圓錐曲線的左,右焦點(diǎn).
(Ⅰ)以原點(diǎn)為極點(diǎn)、軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過(guò)點(diǎn)且平行于直線的直線的極坐標(biāo)方程;
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點(diǎn),求弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

極坐標(biāo)方程r=2sinq和參數(shù)方程(t為參數(shù))所表示的圖形分別為(   )
A.圓,圓B.圓,直線C.直線,直線D.直線,圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求圓心在點(diǎn)處并且過(guò)極點(diǎn)的圓的極坐標(biāo)方程,并把它化為直角坐標(biāo)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案