【題目】設(shè)x,y∈R,定義xy=x(a﹣y)(a∈R,且a為常數(shù)),若f(x)=ex , g(x)=e﹣x+2x2 , F(x)=f(x)g(x).
①g(x)不存在極值;
②若f(x)的反函數(shù)為h(x),且函數(shù)y=kx與函數(shù)y=|h(x)|有兩個(gè)交點(diǎn),則k= ;
③若F(x)在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是(﹣∞,﹣2];
④若a=﹣3,在F(x)的曲線上存在兩點(diǎn),使得過這兩點(diǎn)的切線互相垂直.
其中真命題的序號(hào)有 . (把所有真命題序號(hào)寫上)
【答案】②③
【解析】解:∵xy=x(a﹣y),f(x)=ex,g(x)=e﹣x+2x2,
∴F(x)=f(x)g(x)=ex(a﹣e﹣x﹣2x2),
則F′(x)=﹣ex(2x2+4x﹣a),
當(dāng)2x2+4x﹣a=0的△>0時(shí),g(x)即有極大值,又有極小值,故①錯(cuò)誤;
∵f(x)的反函數(shù)為h(x),
∴h(x)=lnx,若函數(shù)y=kx與函數(shù)y=|h(x)|有兩個(gè)交點(diǎn),
則y=kx與函數(shù)y=lnx,(x>1)相切,
此時(shí)切點(diǎn)為(e,1),切線斜率為 ;
故②正確;
若F(x)在減函數(shù),則F′(x)≤0對(duì)于x∈R恒成立,
即﹣ex(2x2+4x﹣a)≤0恒成立,
∵﹣ex<0,
∴2x2+4x﹣a≥0恒成立,
∴△=16﹣8(﹣a)≤0,
∴a≤﹣2;
即實(shí)數(shù)a的取值范圍是(﹣∞,﹣2],故③正確;
④當(dāng)a=﹣3時(shí),F(xiàn)(x)=﹣3ex﹣1﹣2x2ex,
設(shè)P(x1,y1),Q(x2,y2)是F(x)曲線上的任意兩點(diǎn),
∵F′(x)=﹣ex(2x2+4x+3)
=﹣ex[2(x+1)2+1]<0,
∴F′(x1)F′(x2)>0,
∴F′(x1)F′(x2)=﹣1 不成立.
∴F(x)的曲線上不存的兩點(diǎn),使得過這兩點(diǎn)的切線點(diǎn)互相垂直.
故④錯(cuò)誤;
故真命題的序號(hào)為:②③,
所以答案是:②③
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣x+m(m∈R)的圖象與x軸相交于A(x1 , 0),B(x2 , 0)兩點(diǎn),且x1<x2 .
(I)若函數(shù)f(x)的最大值為2,求m的值;
(Ⅱ)若 恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)證明:x1x2<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:x2+4y2=4.
(1)求橢圓C的離心率;
(2)橢圓C的長(zhǎng)軸的兩個(gè)端點(diǎn)分別為A,B,點(diǎn)P在直線x=1上運(yùn)動(dòng),直線PA,PB分別與橢圓C相交于M,N兩個(gè)不同的點(diǎn),求證:直線MN與x軸的交點(diǎn)為定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 為自然對(duì)數(shù)的底數(shù),若對(duì)任意的 ,總存在唯一的 ,使得 成立,則實(shí)數(shù) 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問題:糧倉(cāng)開倉(cāng)收糧,糧農(nóng)送來米1512石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約( )
A.164石
B.178石
C.189石
D.196石
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) (b≠0).
(1)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)f(x)的極值點(diǎn);
(3)令b=1, ,設(shè)A(x1 , y1),B(x2 , y2),C(x3 , y3)是曲線y=g(x)上相異三點(diǎn),其中﹣1<x1<x2<x3 . 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩隊(duì)參加奧運(yùn)知識(shí)競(jìng)賽,每隊(duì)3人,每人回答一個(gè)問題,答對(duì)者對(duì)本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 ,且各人回答正確與否相互之間沒有影響.用ξ表示甲隊(duì)的總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)用A表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用B表示“甲隊(duì)總得分大于乙隊(duì)總得分”這一事件,求P(AB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)對(duì)x∈R恒成立,當(dāng)x∈[0,1]時(shí),f(x)=2x , 則f(﹣log224)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù)且A>0,ω>0, )的部分圖象如圖所示,若 ( ),則 的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com