前不久,社科院發(fā)布了2013年度“全國城市居民幸福排行榜”,北京市成為本年度最“幸福城”.隨后,某師大附中學生會組織部分同學,用“10分制”隨機調查“陽光”社區(qū)人們的幸福度.現(xiàn)從調查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分數(以小數點前的一位數字為莖,小數點后一位為葉):
指出這組數據的眾數和中位數;
若幸福度不低于9.5分,則稱該人的幸福度為“極幸!.求從這16人中隨機選取3人,至多有1人是“極幸!钡母怕;
以這16人的樣本數據來估計整個社區(qū)的總體數據,若從該社區(qū)(人數很多)人選3人,記表示抽到“極幸!钡娜藬,求的分布列及數學期望.
(1)眾數:8.6;中位數:8.75;(2);(3)分布詳見答案;期望為
解析試題分析:(1)根據所給的莖葉圖看出16個數據,找出眾數和中位數,眾數即為出現(xiàn)次數最多的數,中位數需要按照從小到大的順序排列得到結論;
(2)由題意知本題是一個古典概型,至多有1人是“極幸!卑ㄓ幸粋人是極幸福和有零個人是極幸福,根據古典概型公式得到結果,有一個是極幸福的概率為,有零個是極幸福的概率為,所以至多有1人是“極幸!钡母怕蕿;
(3)由于從該社區(qū)任選3人,記表示抽到“極幸!睂W生的人數,得到變量的可能取值是0、1、2、3,結合變量對應的事件,算出概率,寫出分布列和期望.
(1)眾數:8.6;中位數:8.75 ;
(2)設表示所取3人中有個人是“極幸!,至多有1人是“極幸!庇洖槭录,則 ;
(3)的可能取值為0,1,2,3.
;
;
;
.
的分布列為:
所以.
考點:數據特征;莖葉圖;離散型隨機變量的期望.
科目:高中數學 來源: 題型:解答題
乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局數多于5局的概率;
(3)求比賽局數的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進入之后有兩條巷道通往作業(yè)區(qū)(如下圖),巷道有三個易堵塞點,各點被堵塞的概率都是;巷道有兩個易堵塞點,被堵塞的概率分別為.
(1)求巷道中,三個易堵塞點最多有一個被堵塞的概率;
(2)若巷道中堵塞點個數為,求的分布列及數學期望,并按照"平均堵塞點少的巷道是較好的搶險路線"的標準,請你幫助救援隊選擇一條搶險路線,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
袋中裝有大小和形狀相同的小球若干個黑球和白球,且黑球和白球的個數比為4:3,從中任取2個球都是白球的概率為現(xiàn)不放回從袋中摸取球,每次摸一球,直到取到白球時即終止,每個球在每一次被取出的機會是等可能的,用表示取球終止時所需要的取球次數.
(1)求袋中原有白球、黑球的個數;
(2)求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2012•廣東)某班50位學生期中考試數學成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績不低于80分的學生中隨機選取2人,該2人中成績在90分以上(含90分)的人數記為ξ,求ξ的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,平面區(qū)域W中的點的坐標(x,y)滿足從區(qū)域W中隨機取點M(x,y).
(1)若x∈Z,y∈Z,求點M位于第一象限的概率.
(2)若x∈R,y∈R,求|OM|≤2的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
小波以游戲方式決定是去打球、唱歌還是去下棋。游戲規(guī)則為:以O為起點,再從(如圖)這六個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數量積為,若就去打球,若就去唱歌,若就去下棋。
(1)寫出數量積的所有可能值;
(2)分別求小波去下棋的概率和不去唱歌的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,A地到火車站共有兩條路徑和,據統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在個時間段內的頻率如下表:
時間(分鐘) | 1020 | 2030 | 3040 | 4050 | 5060 |
的頻率 | |||||
的頻率 | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一批產品需要進行質量檢驗,檢驗方案是:先從這批產品中任取4件作檢驗,這4件產品中優(yōu)質品的件數記為n.如果n=3,再從這批產品中任取4件作檢驗,若都為優(yōu)質品,則這批產品通過檢驗;如果n=4,再從這批產品中任取1件作檢驗,若為優(yōu)質品,則這批產品通過檢驗;其他情況下,這批產品都不能通過檢驗.
假設這批產品的優(yōu)質品率為50%,即取出的產品是優(yōu)質品的概率都為,且各件產品是否為優(yōu)質品相互獨立.
(1)求這批產品通過檢驗的概率;
(2)已知每件產品檢驗費用為100元,凡抽取的每件產品都需要檢驗,對這批產品作質量檢驗所需的費用記為X(單位:元),求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com