已知函數(shù)f(x)=(x-1)2,g(x)=alnx.
(1)若兩曲線y=f(x)與y=g(x)在x=2處的切線互相垂直,求a的值,并判斷函數(shù)F(x)=f(x)-g(x)的單調(diào)性并寫出其單調(diào)區(qū)間;
(2)若函數(shù)數(shù)學(xué)公式的圖象與直線y=x至少有一個交點,求實數(shù)a的取值范圍.

解:(1)由題意:g′(x)=,∴g(x)的圖象在x=2切線的斜率為:g′(2)=,
又f′(x)=2(x-1),∴f(x)的圖象在x=2切線的斜率為:f′(2)=2,
由兩曲線y=f(x)與y=g(x)在x=2處的切線互相垂直得:
,∴a=-1,
∴F(x)=f(x)-g(x)=(x-1)2+lnx,(x>0)
∴F′(x)=2x+-2≥2-2>0
即函數(shù)F(x)在(0,+∞)上為增函數(shù),
(2)?(x)=
令h(x)=?(x)-x,由題意得h(x)=0在區(qū)間(0,+∞)上至少有一解,,令h'(x)=0,得
①當<0即a<0時,h(x)單調(diào)遞增區(qū)間為(0,1),減區(qū)間為(1,+∞),
所以h(x)max=h(1)=-1<0,所以方程h(x)=0無解.
②當>1即時,h(x)單調(diào)遞增區(qū)間為(0,1),(,減區(qū)間為(1,),所以極大值h(1)=-1,極小值,
又h(x)=
,所以方程恰好有一解;
③當時,h'(x)≥0,由上②知方程也恰好有一解;
④當時,h(x)單調(diào)遞增區(qū)間為(0,),(1,+∞),減區(qū)間為(,1),
同上可得方程h(x)=0在(0,+∞)上至少有一解.
綜上所述,所求a的取值范圍為(0,+∞)
分析:(1)根據(jù)兩曲線y=f(x)與y=g(x)在x=2處的切線互相垂直,利用導(dǎo)數(shù)研究曲線上某點切線的斜率求出a值,再利用導(dǎo)數(shù)法求函數(shù)的單調(diào)遞增區(qū)間.
(2)由于?(x)=,令h(x)=?(x)-x,由題意得h(x)=0在區(qū)間(0,+∞)上至少有一解,下面利用導(dǎo)數(shù)工具結(jié)合分類討論思想研究此函數(shù)的單調(diào)性,最后綜合得出a的取值范圍.
點評:本題以函數(shù)為載體,考查函數(shù)的解析式,考查函數(shù)的單調(diào)性,考查函數(shù)的零點與方程根的關(guān)系,注意利用導(dǎo)數(shù)工具的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案