已知函數(shù)f(x)=2x+1與函數(shù)y=g(x)的圖象關(guān)于直線x=2成軸對(duì)稱圖形,則函數(shù)y=g(x)的解析式為________.

y=-2x+9
分析:先設(shè)g(x)的圖象上的任一點(diǎn)P(x,y)以及P關(guān)于直線x=2的對(duì)稱點(diǎn)P′(x′,y′),根據(jù)點(diǎn)關(guān)于直線對(duì)稱的性質(zhì),用p的坐標(biāo)表示P′的坐標(biāo),再把P′的坐標(biāo)代入函數(shù)y=2x+1進(jìn)行整理,求出g(x)所對(duì)應(yīng)的函數(shù)解析式.
解答:設(shè)g(x)的圖象上的任一點(diǎn)P(x,y),且P關(guān)于直線x=2的對(duì)稱點(diǎn)P′(x′,y′),
,解得 ,
∵點(diǎn)P′在函數(shù)y=2x 的圖象上,
∴y=2(4-x)+1=-2x+9,
即C′所對(duì)應(yīng)的函數(shù)解析式為y=-2x+9,
故答案為:y=-2x+9
點(diǎn)評(píng):本題考查了用代入法求函數(shù)的解析式,利用點(diǎn)關(guān)于直線對(duì)稱的性質(zhì)是解決此題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案