已知f(x)=x+-3,x∈[1,2].
(1)當(dāng)b=2時(shí),求f(x)的值域;
(2)若b為正實(shí)數(shù),f(x)的最大值為M,最小值為m,且滿足M-m≥4,求b的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,過點(diǎn)且傾斜角為的直線交橢圓于兩點(diǎn),橢圓的離心率為,.
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),軸,圓過點(diǎn),且橢圓上任意一點(diǎn)都不在圓內(nèi),則稱圓為該橢圓的內(nèi)切圓.問橢圓是否存在過點(diǎn)的內(nèi)切圓?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某通訊公司需要在三角形地帶區(qū)域內(nèi)建造甲、乙兩種通信信號加強(qiáng)中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域內(nèi),乙中轉(zhuǎn)站建在區(qū)域內(nèi).分界線固定,且=百米,邊界線始終過點(diǎn),邊界線滿足.
設(shè)()百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時(shí)?整個(gè)中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象分別與軸相交于兩點(diǎn),且向量(分別是與軸正半軸同方向的單位向量),又函數(shù).
(1)求的值;
(2)若不等式的解集為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有 成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個(gè)上界.已知函數(shù),.
(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)在上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(x+c)2;
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com