20.函數(shù)y=sin3x在($\frac{π}{3}$,0)處的切線斜率為( 。
A.-1B.1C.-3D.3

分析 求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義,結(jié)合特殊角的三角函數(shù)值,可得切線的斜率.

解答 解:函數(shù)y=sin3x的導(dǎo)數(shù)為y′=3cos3x,
可得在($\frac{π}{3}$,0)處的切線斜率為3cosπ=-3,
故選:C.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)數(shù)是解題關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知sin(-π+θ)+2cos(3π-θ)=0,則$\frac{sinθ+cosθ}{sinθ-cosθ}$=( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:4x2+y2=4m2(m>0),過原點的直線與橢圓C交于A,B兩點,點P是橢圓上的任意一點且直線PA,PB與坐標(biāo)軸不平行.
(1)證明:直線PA的斜率與直線PB斜率之積為定值;
(2)若A,B不是橢圓C的頂點,且PA⊥AB,直線BP與x軸,y軸分別交于E,F(xiàn)兩點.
(i)證明:直線BP的斜率與直線AF斜率之比為定值;
(ii)記△OEF的面積為S△OEF,求$\frac{{{S_{△OEF}}}}{m^2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,AB⊥AC,AA1=2$\sqrt{2}$,A1C=CA=AB=2.
(1)若D是AA1的中點,求證:CD⊥平面ABB1A1;
(2)若E是側(cè)棱BB1上的點,且$\sqrt{3}$EB1=BB1,求二面角E-A1C1-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=xsinx,則f(x)在x=$\frac{π}{2}$處的導(dǎo)數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在復(fù)平面內(nèi),復(fù)數(shù)z=-2i+1對應(yīng)的點到原點的距離是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,已知梯形ABCD中,BC∥AD,BC=BE=1,AD=4,E為AD的中點,BE⊥AD.將△ABE沿BE折起到△PBE的位置,使∠PED=120°,如圖2.M是棱PB上的一點(M不與P,B重合),平面DEM交PC于N.

(Ⅰ)求證:DE∥MN;
(Ⅱ)求平面PBE與平面PCD所成銳二面角的余弦值;
(Ⅲ)是否存在點M,使得平面MNDE⊥平面PCD?若存在,求出$\frac{PM}{PB}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.△ABC中,已知A(-1,2),B(3,4),C(0,3),則AB邊上的高CH所在直線的方程為2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平行四邊形OABC中,O為坐標(biāo)原點,過點C(1,3)作CD⊥AB于點D,
(1)求CD所在直線的方程;
(2)當(dāng)D(4,2)時,求△OCD外接圓的方程.

查看答案和解析>>

同步練習(xí)冊答案