對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三個條件:
①對任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2) 成立則稱函數(shù)f(x)為理想函數(shù).
(Ⅰ)若函數(shù)f(x)為理想函數(shù),則f(0)=
 
;
(Ⅱ)下列結(jié)論正確的是
 
.(寫出所有正確結(jié)論的序號)
①函數(shù)f(x)=2x-1(x∈[0,1])是理想函數(shù);
②若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0
考點:函數(shù)恒成立問題
專題:新定義,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)首先根據(jù)理想函數(shù)的概念,可以采用賦值法,可考慮取x1=x2=0,代入f(x1+x2)≥f(x1
+f(x2),可得f(0)≥f(0)+f(0),由已知f(0)≥0,可得f(0)=0;
(Ⅱ)①要判斷函數(shù)g(x)=2x-1,(x∈[0,1])在區(qū)間[0,1]上是否為“理想函數(shù),只要檢驗函數(shù)g(x)=2x-1,是否滿足理想函數(shù)的三個條件即可;
②由條件③知,任給m、n∈[0,1],當(dāng)m<n時,由m<n知n-m∈[0,1],f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).由此能夠推導(dǎo)出f(x0)=x0.,根據(jù)f[f(x0)]=x0,則f(x0)=x0
解答: 解:(Ⅰ)取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f(0)≥f(0)+f(0)
即f(0)≤0,由已知?x∈[0,1],總有f(x)≥0可得f(0)≥0,
∴f(0)=0;
(Ⅱ)①顯然f(x)=2x-1在[0,1]上滿足f(x)≥0;②f(1)=1.
若x1≥0,x2≥0,且x1+x2≤1,
則有f(x1+x2)-[f(x1)+f(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=(2x2-1)(2x1-1)≥0
故f(x)=2x-1滿足條件①②③,所以f(x)=2x-1為理想函數(shù).
②由條件③知,任給m、n∈[0,1],當(dāng)m<n時,由m<n知n-m∈[0,1],
∴f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m).
若f(x0)>x0,則f(x0)≤f[f(x0)]=x0,前后矛盾;
若:f(x0)<x0,則f(x0)≥f[f(x0)]=x0,前后矛盾.
故f(x0)=x0
故答案為:0,①②.
點評:賦值法是解決抽象函數(shù)問題的常用方法,函數(shù)的新定義則轉(zhuǎn)化為函數(shù)性質(zhì)問題,本題則結(jié)合指數(shù)函數(shù)的性質(zhì),探討函數(shù)的函數(shù)值域,指數(shù)函數(shù)的單調(diào)性的應(yīng)用等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(2x+
π
6

(1)當(dāng)-
π
6
≤x≤
π
3
時,求函數(shù)y=f(x)的最大值和最小值及相應(yīng)的x的值;
(2)若方程f(x)=a在區(qū)間[0,
3
]上只有一個實數(shù)根,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)+x2-x-2-a=0在區(qū)間[1,3]內(nèi)恰有兩個相異實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
-alnx.(a∈R)
(1)當(dāng)a=-1時,試確定函數(shù)f(x)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)f(x)在(0,e)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
ln(x+1)
+5x
4-x2
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=2+t
y=-1-t
(t為參數(shù)),則直線l被曲線C截得的線段長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)定義域為[1,2],則f(2x+1)定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱的底面邊長為2,高為2,則它的外接球表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長為2,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為
 

查看答案和解析>>

同步練習(xí)冊答案