若直線y=|
a
|x+1與直線y=|
b
|x平行,
a
,
b
為非零向量,則必有( 。
A、
a
b
B、
a
b
C、(
a
+
b
)⊥(
a
-
b
D、(
a
+
b
)∥(
a
-
b
考點:數(shù)量積判斷兩個平面向量的垂直關系,平面向量數(shù)量積的運算,向量在幾何中的應用,直線的一般式方程與直線的平行關系
專題:平面向量及應用
分析:通過直線的平行,推出向量的模的關系,然后判斷選項即可.
解答: 解:∵直線y=|
a
|x+1與直線y=|
b
|x平行,
a
b
為非零向量,
∴|
a
|=|
b
|,不妨令
a
,
b
為單位向量,顯然
a
b
a
b
,不正確;
而(
a
+
b
)•(
a
-
b
)=
a
2
-
b
2

∵|
a
|=|
b
|,∴
a
2
-
b
2
=0
,
∴(
a
+
b
)⊥(
a
-
b
).
故選:C.
點評:本題考查向量的幾何中的應用,考查向量的垂直與平行關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進行調查,他們月收入(單位:百元)的頻數(shù)分布及對樓市限購令的贊成人數(shù)如下表:
月收入 [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 8 8 5 2 1
將月收入不低于55的人群稱為“高收入族”,月收入低于55的人群稱為“非高收入族”.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,有多大的把握認為贊不贊成樓市限購令與收入高低有關?
非高收入族 高收入族 總計
贊成
不贊成
總計
(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率.
附:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

P (X2≥K) 0.01 0.05 0.1
K 6.635 3.841 2.706

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,復數(shù)
2
1+i
-i的共軛復數(shù)的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在定義域R上的值不全為零,若函數(shù)f(x+1)的圖象關于(1,0)對稱,函數(shù)f(x+3)的圖象關于直線x=1對稱,則下列式子中錯誤的是(  )
A、f(-x)=f(x)
B、f(x-2)=f(x+6)
C、f(-2+x)+f(-2-x)=0
D、f(3+x)+f(3-x)=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
b
是同一平面內所有向量的一組基底,若(λ
a
+
b
)∥(
a
-2
b
),則實數(shù)λ的值為(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設i是虛數(shù)單位,
.
z
表示復數(shù)z的共軛復數(shù).若z=1+i,則
z
i
+i•
.
z
=( 。
A、-2B、-2iC、2D、2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一批貨物隨17列貨車從A市以v千米/小時勻速直達B市,已知兩地鐵路線長為400千米,為了安全,兩列貨車的間距不得少于(
v
20
2千米,那么這批貨物全部運到B市最快需要( 。
A、6小時B、8小時
C、10小時D、12小時

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(
3y
+
1
x
5的展開式的第3項為10,
(1)求y=f(x)的解析式及定義域;
(2)若不等式2f(x)-1>m(f2(x)-1)對滿足-2≤m≤2的所有m都成立,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

同步練習冊答案