【題目】在平面直角坐標(biāo)系中,曲線: (為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(1)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線交曲線于, 兩點,交曲線于, 兩點,求線段的長.
【答案】(Ⅰ)曲線 ,曲線 .(Ⅱ) .
【解析】試題分析:
(Ⅰ)由 , , ,能求出曲線C1的極坐標(biāo)方程,曲線C2的參數(shù)方程消去參數(shù)能求出曲線C2的普通方程,從而能求出曲線C2的極坐標(biāo)方程.
(Ⅱ)聯(lián)立直線與圓的方程,求交點坐標(biāo),計算, 的長,從而根據(jù)計算可得.
試題解析:(Ⅰ)曲線的普通方程為,即,
曲線的極坐標(biāo)方程為,即.
因為曲線的極坐標(biāo)方程為,即,
故曲線的直角坐標(biāo)方程為,即.
(Ⅱ)直線的極坐標(biāo)方程為,化為直角坐標(biāo)方程得,
由得或. 則,
由得或則.
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=( )
A.0
B.﹣100
C.100
D.10200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點M為PC中點,過A、M的平面α與此四棱錐的面相交,交線圍成一個四邊形,且平面α⊥平面PBC.
(1)在圖中畫出這個四邊形(不必說出畫法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項和為Sn .
(Ⅰ)求an;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大小;
(2)解不等式f(x)≤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 若Sn=2an﹣3n.
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列,并求出數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com