已知:如圖12,P是正方形ABCD所在平面外一點,PA=PB=PC=PD=a,AB=a.
求:平面APB與平面CPD相交所成較大的二面角的余弦值.
分析:為了找到二面角及其平面角,必須依據(jù)題目的條件,找出兩個平面的交線.
解:因為 AB∥CD,CD 平面CPD,AB 平面CPD.
所以 AB∥平面CPD.
又 P∈平面APB,且P∈平面CPD,
因此 平面APB∩平面CPD=l,且P∈l.
所以 二面角B-l-C就是平面APB和平面CPD相交所得到的一個二面角.
因為 AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,
所以 AB∥l.
過P作PE⊥AB,PE⊥CD.
因為 l∥AB∥CD,
因此 PE⊥l,PF⊥l,
所以 ∠EPF是二面角B-l-C的平面角.
因為 PE是正三角形APB的一條高線,且AB=a,
因為 E,F(xiàn)分別是AB,CD的中點,
所以 EF=BC=a.
在△EFP中,
科目:高中數(shù)學 來源:2010-2011學年江西省高三第六次模擬考試數(shù)學理卷 題型:解答題
. (本小題滿分12分)
如圖,四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,已知AB=,∠APB=∠ADB=60°
(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)求PH與平面PAD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且DE=2PE.
(I)求異面直線PA與CD所成的角的大;
(II)求證:BE⊥平面PCD;
(III)求二面角A—PD—B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且DE=2PE.
(I)求異面直線PA與CD所成的角的大;
(II)求證:BE⊥平面PCD;
(III)求二面角A—PD—B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題共12分)
已知橢圓A1、A2、B是橢圓的頂點(如圖),直線與橢圓交于異于橢圓頂點的P、Q兩點,且//A2B。若此橢圓的離心率為
(I)求此橢圓的方程;
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com