在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,動(dòng)點(diǎn)P,Q分別在線段C1D,AC上,則線段PQ長(zhǎng)度的最小值是
 
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:計(jì)算題,空間位置關(guān)系與距離
分析:建立空間直角坐標(biāo)系,設(shè)點(diǎn)P的坐標(biāo)為(0,λ,2λ),λ∈[0,1],點(diǎn)Q的坐標(biāo)為(1-μ,μ,0),μ∈[0,1],求出PQ,利用配方法,即可求出線段PQ長(zhǎng)度的最小值.
解答: 解:建立如圖所示的空間直角坐標(biāo)系,則A(1,0,0),B(1,1,0),C(0,1,0),C1(0,1,2),
設(shè)點(diǎn)P的坐標(biāo)為(0,λ,2λ),λ∈[0,1],點(diǎn)Q的坐標(biāo)為(1-μ,μ,0),μ∈[0,1],
∴PQ=
5(λ-
1
9
)2+
9
5
(μ-
5
9
)2+
4
9

當(dāng)且僅當(dāng)λ=
1
9
,μ=
5
9
時(shí),線段PQ的長(zhǎng)度取得最小值
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查求線段PQ長(zhǎng)度的最小值,考查向量法的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有10件產(chǎn)品,其中3件次品,7件正品,現(xiàn)從中抽取5件,求抽得次品件數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:關(guān)于x的不等式
x
0
(2t-1)dt
-m>0對(duì)任意的x∈[1,2]恒成立;q:f(x)=
x2,x≥0
x-1,x<0
,且不等式f(m2)>f(m+2)恒成立,若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式an=
1
n
+
n+1
,若{an}的前n項(xiàng)和為24,則n為(  )
A、25B、576
C、624D、625

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B在拋物線y2=2x上且位于x軸的兩側(cè),
OA
OB
=3(其中O為原點(diǎn)),則直線AB所過(guò)的定點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(-
16π
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(x-a)(x-b),異于坐標(biāo)原點(diǎn)O點(diǎn)的兩點(diǎn)A(m,f(m)),B(n,f(n)).
(Ⅰ)若a=0,b=3,函數(shù)f(x)在(t,t+3)上取得極小值,求實(shí)數(shù)t的取值范圍;
(Ⅱ)若a=b=0時(shí),討論函數(shù)g(x)=lnx-
λf(x)
x
在x∈[1,+∞)上的零點(diǎn)情況;
(Ⅲ)若0<a<b,函數(shù)f(x)在x=m和x=n處取得極值,且直線OA與直線OB垂直,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(1+x)2-ln(1+x)的單調(diào)區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(Ⅰ)判斷并說(shuō)明PA上是否存在點(diǎn)G,使得EG∥平面PFD?若存在,求出
PG
GA
的值;若不存在,請(qǐng)說(shuō)明理由;
(Ⅱ)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案