已知x
1
2
+x-
1
2
=3,求
x
3
2
+x-
3
2
-3
x2+x-2-2
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)完全平方公式和立方和公式計(jì)算即可.
解答: 解:∵x
1
2
+x-
1
2
=3,
∴(x
1
2
+x-
1
2
2=9,
∴x+x-1=7,
x
3
2
+x-
3
2
-3
x2+x-2-2
=
(x
1
2
+
x-
1
2
)(x-1+x-1
)-3
(x+x-1)2-4
=
3×(7-1)-3
72-4
=
1
3
點(diǎn)評(píng):本題主要考查了分式的化簡(jiǎn)和計(jì)算,掌握全平方公式和立方和公式是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)∠A,∠B,∠C是△ABC的三個(gè)內(nèi)角,且tanA、
5
12
、tanB成等差數(shù)列,tanA、
6
6
、tanB成等比數(shù)列,則△ABC是(  )
A、銳角三角形
B、等邊三角形
C、鈍角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-1
x-2

(1)寫(xiě)出函數(shù)f(x)的對(duì)稱(chēng)中心;
(2)若x≥3,求f(x)的取值范圍;
(3)若將f(x)的圖象沿x軸水平向左平移兩個(gè)單位,再向下平移一個(gè)單位,得到g(x)的圖象,求出g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=6,側(cè)棱AA1=4,E,F(xiàn),G分別是AB,AD,AA1的中點(diǎn).
(1)求證:平面EFG∥平面B1CD1
(2)求異面直線EF與B1C間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)大學(xué)畢業(yè)后在一家公司上班,工作年限x和年收入y(萬(wàn)元),有以下的統(tǒng)計(jì)數(shù)據(jù):
x3456
y2.5344.5
(Ⅰ)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求得y關(guān)于x的線性回歸方程為
y
=0.7x+a
,求a的值;
(Ⅲ)請(qǐng)你估計(jì)該同學(xué)第8年的年收入約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm).
(1)按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖; 
(2)在所給直觀圖中連接BC′,求證:BC′∥面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
cos2θ-2cosθ+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿(mǎn)足2n2-(λ+an)n+
3
2
an=0(λ∈R,n∈N*);等比數(shù)列{bn}的首項(xiàng)為b1=2,公比為q(q為正整數(shù)),且滿(mǎn)足3b3是8b1與b5的等差中項(xiàng).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)試確定λ的值,使得數(shù)列{an}為等差數(shù)列;
(3)當(dāng){an}為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù)k,在bk與bk+1之間插入ak個(gè)2,得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn} 的前n項(xiàng)和,試求滿(mǎn)足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案