如圖,矩形ABCD中,AB=CD=2,BC=AD=。現(xiàn)沿著其對角線AC將D點(diǎn)向上翻折,使得二面角D—AC—B為直二面角。
(Ⅰ)求二面角A—BD—C平面角的余弦值。
(Ⅱ)求四面體ABCD外接球的體積;
如圖,過點(diǎn)D、B分別向AC引垂線,垂足分別為E、F。易知AE=CF=1,EF=3,DE=BF=2。又DE⊥AC,AC=面ACD∩面ABC,二面角D—AC—B為直二面角,所以DE⊥平面ABC,又因為BF平面ABC,所以DE⊥BF。故DE、AC、BF兩兩垂直。如圖以點(diǎn)F為坐標(biāo)原點(diǎn),F(xiàn)B為x軸,F(xiàn)C為y軸,平行于ED的方向為z軸,建立空間直角坐標(biāo)系.
則各點(diǎn)的如下A(0,-4,0),B(2,0,0),C(0,1,0),D(0,-3,2). (3分)
(1) =(0,1,2),=(2,4,0),=(-2,1,0),=(0,-4,2)
設(shè)平面ABD的法向量為=(x,y,1),則,
即=(4,-2,1)
設(shè)平面BCD的法向量為=(1,b,c),則
即=(1,2,4)
Cos<,>==. [來源:]
由圖形知二面角A—BD—C平面角的余弦值為-. (8分)
(2)設(shè)O為AC的中點(diǎn),∵⊿ABC與⊿ADC都為直角三角形,∴OA=OB=OC=OD,∴O為四面體ABCD的外接球的球心.
∴四面體ABCD的體積
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
8
| ||
3 |
2π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AE |
AF |
9 |
2 |
9 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2
| ||||
12 |
2
| ||||
12 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PQ |
QD |
BP |
QD |
| ||
10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com