| ||||
|
3 |
3 |
. |
AB |
. |
AC |
3 |
n |
. |
AB |
n |
. |
AC |
n |
3 |
n |
3 |
3 |
n |
. |
FA |
n•
| ||
|n|•|
|
1 |
2 |
n |
. |
FA |
| ||
2 |
3 |
3+x2 |
| ||
|
| ||||
|
3 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(02年北京卷文)(12分)
如圖,在多面體ABCD―A1B1C1D1中,上、下底面平行且均為矩形,相對(duì)的側(cè)面與同一底面所成的二面角大小相等,上、下底面矩形的長(zhǎng)、寬分別為c,d與a,b且a>c,b>d,兩底面間的距離為h..
(Ⅰ)求側(cè)面ABB1A1與底面ABCD所成二面角正切值;
(Ⅱ)在估測(cè)該多面體的體積時(shí),經(jīng)常運(yùn)用近似公式
V估=S中截面?h來(lái)計(jì)算.已知它的體積公式是
(S上底面+4S中截面+S下底面),
試判斷V估與V的大小關(guān)系,并加以證明.
(注:與兩個(gè)底面平行,且到兩個(gè)底面距離相等的截面稱為該多面體的中截面.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖1,在多面體ABCD—A1B1C1D1中,上、下底面平行且均為矩形,相對(duì)的側(cè)面與同一底面所成的二面角大小相等,側(cè)棱延長(zhǎng)后相交于E,F兩點(diǎn),上、下底面矩形的長(zhǎng)、寬分別為c,d與a,b,且a>c,b>d,兩底面間的距離為h。
(Ⅰ)求側(cè)面ABB1A1與底面ABCD所成二面角的大小;
(Ⅱ)證明:EF∥面ABCD;
(Ⅲ)在估測(cè)該多面體的體積時(shí),經(jīng)常運(yùn)用近似公式V估=S中截面·h來(lái)計(jì)算.已知它的體積公式是V=(S上底面+4S中截面+S下底面),試判斷V估與V的大小關(guān)系,并加以證明。
(注:與兩個(gè)底面平行,且到兩個(gè)底面距離相等的截面稱為該多面體的中截面)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海交大附中高三數(shù)學(xué)理總復(fù)習(xí)二空間向量與立體幾何練習(xí)卷(解析版) 題型:解答題
如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.
(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com