【題目】如圖,在四棱錐 中,底面為矩形,平面,二面角的平面角為,為中點(diǎn),為中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)若,求實(shí)數(shù)的值,使得直線與平面所成角為.
【答案】(1)詳見證明;(2)詳見證明;(3).
【解析】
(1)建立空間直角坐標(biāo)系, 寫出坐標(biāo),證明與平面的法向量垂直即可;
(2)求出平面與平面的法向量,證明平面與平面的法向量垂直即可;
(3)根據(jù)直線與平面所成角為建立出關(guān)于的方程,從而求出的值.
解:(1)因為平面,
所以,
又因為底面為矩形,
所以,
因為,
平面,
所以平面,
所以,
因為,且二面角的平面角為,
所以,
故,設(shè),,
因為底面為矩形,平面,
故,,
以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則,,
,,
顯然平面的法向量為,
因為,
所以,
因為平面,
所以平面;
(2)由(1)得,,,,
設(shè)平面的法向量為,
故有即
令,則,
同理,可得平面的法向量為,
因為,
所以,
所以平面平面;
(3)因為,
所以,即,
故,
因為直線與平面所成角為,
所以,
即,
化簡,解得
因為,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.
(Ⅰ)解不等式f(x)>9;
(Ⅱ)x1∈R,x2∈R,使得f(x1)=g(x2),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(a-2)lnx+1(a∈R).
(1)若函數(shù)在點(diǎn)(1,f(1))處的切線平行于直線y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,討論c(x)的單調(diào)性;
(3)a=1時,函數(shù)y=f(x)圖象上的所有點(diǎn)都落在區(qū)域內(nèi),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,,為中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果與都是無理數(shù),則直線不經(jīng)過任何整點(diǎn)
③直線經(jīng)過無窮多個整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過兩個不同的整點(diǎn)
④直線經(jīng)過無窮多個整點(diǎn)的充分必要條件是:與都是有理數(shù)
⑤存在恰經(jīng)過一個整點(diǎn)的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題:①設(shè),則是的充要條件;②已知命題、、滿足“或”真,“或”也真,則“或”假;③若,則使得恒成立的的取值范圍為{或};④將邊長為的正方形沿對角線折起,使得,則三棱錐的體積為.其中真命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點(diǎn),漸近線方程為,直線過點(diǎn)且與雙曲線有且只有一個公共點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,橢圓的離心率是,的面積是.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)直線與橢圓交于,兩點(diǎn)(異于點(diǎn)),若直線與直線的斜率之和為1,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步推動全市學(xué)習(xí)型黨組織、學(xué)習(xí)型社會建設(shè),某市組織開展“學(xué)習(xí)強(qiáng)國”知識測試,每人測試文化、經(jīng)濟(jì)兩個項目,每個項目滿分均為60分.從全體測試人員中隨機(jī)抽取了100人,分別統(tǒng)計他們文化、經(jīng)濟(jì)兩個項目的測試成績,得到文化項目測試成績的頻數(shù)分布表和經(jīng)濟(jì)項目測試成績的頻率分布直方圖如下:
經(jīng)濟(jì)項目測試成績頻率分布直方圖
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
2 | |
3 | |
5 | |
15 | |
40 | |
35 |
文化項目測試成績頻數(shù)分布表
將測試人員的成績劃分為三個等級如下:分?jǐn)?shù)在區(qū)間內(nèi)為一般,分?jǐn)?shù)在區(qū)間內(nèi)為良好,分?jǐn)?shù)在區(qū)間內(nèi)為優(yōu)秀.
(1)在抽取的100人中,經(jīng)濟(jì)項目等級為優(yōu)秀的測試人員中女生有14人,經(jīng)濟(jì)項目等級為一般或良好的測試人員中女生有34人.填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為“經(jīng)濟(jì)項目等級為優(yōu)秀”與性別有關(guān)?
優(yōu)秀 | 一般或良好 | 合計 | |
男生數(shù) | |||
女生數(shù) | |||
合計 |
(2)用這100人的樣本估計總體.
(i)求該市文化項目測試成績中位數(shù)的估計值.
(ii)對該市文化項目、經(jīng)濟(jì)項目的學(xué)習(xí)成績進(jìn)行評價.
附:
0.150 | 0.050 | 0.010 | |
2.072 | 3.841 | 6.635 |
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com