精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=2sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函數f(x)的最小正周期及在區(qū)間[0,]上的最大值和最小值;
(Ⅱ)若f(x)=,x∈[,],求cos2x的值.
【答案】分析:先將原函數化簡為y=Asin(ωx+φ)+b的形式
(1)根據周期等于2π除以ω可得答案,又根據函數圖象和性質可得在區(qū)間[0,]上的最值.
(2)將x代入化簡后的函數解析式可得到sin(2x+)=,再根據x的范圍可求出cos(2x+)的值,
最后由cos2x=cos(2x+)可得答案.
解答:解:(1)由f(x)=2sinxcosx+2cos2x-1,得
f(x)=(2sinxcosx)+(2cos2x)-1)=sin2x+cos2x=2sin(2x+
所以函數f(x)的最小正周期為π.
因為f(x)=2sin(2x+)在區(qū)間[0,]上為增函數,在區(qū)間[,]上為減函數,
又f(0)=1,f()=2,f()=-1,所以函數f(x)在區(qū)間[0,]上的最大值為2,最小值為-1.
(Ⅱ)由(1)可知f(x)=2sin(2x+
又因為f(x)=,所以sin(2x+)=
由x∈[,],得2x+∈[]
從而cos(2x+)=-=-
所以
cos2x=cos[(2x+)-]=cos(2x+)cos+sin(2x+)sin=
點評:本小題主要考查二倍角的正弦與余弦、兩角和的正弦、函數y=Asin(ωx+φ)的性質、同角三角函數的基本關系、兩角差的余弦等基礎知識,考查基本運算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案