若正數(shù)a,b滿足ab=a+b+3,求ab的取值范圍.
【答案】分析:將式子中的a+b用ab表示,再解不等式求出范圍
解答:解:∵正數(shù)a,b
∴ab=a+b+3≥2+3
∴ab≥2+3
≥0

∴ab≥9
點(diǎn)評(píng):若一個(gè)等式中,有兩個(gè)數(shù)的乘積同時(shí)有這兩個(gè)數(shù)的和,求其中一個(gè)的最值時(shí),通常用的方法是:用基本不等式將等式轉(zhuǎn)化成要求部分的不等式,解不等式求出范圍
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是(  )
A、[6,+∞)B、[9,+∞)C、(-∞,9]D、(-∞,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+3,則a+b的取值范圍是
[6,+∞)
[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=8+a+b,則ab的取值范圍是
[16,+∞)
[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+8,則ab的最小值為
16
16

查看答案和解析>>

同步練習(xí)冊(cè)答案