【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.
【答案】證明:(Ⅰ)∵在底面ABCD中,AB=1,AC= ,BC=2, ∴AB2+AC2=BC2 , ∴AB⊥AC,
∵側棱AA1⊥底面ABCD,∴AA1⊥AC,
又∵AA1∩AB=A,AA1 , AB平面ABB1A1 ,
∴AC⊥平面ABB1A1 .
(Ⅱ)解:過點C作CP⊥C1D于P,連接AP,
由(Ⅰ)可知,AC⊥平面DCC1D1 ,
∠CPA是二面角A﹣C1D﹣C的平面角,
∵CC1=BB1=2,CD=AB=1,∴CP= = = ,
∴tan = ,∴cos ,
∴二面角A﹣C1D﹣C的平面角的余弦值為 .
【解析】(Ⅰ)推導出AB⊥AC,AA1⊥AC,由此能證明AC⊥平面ABB1A1 . (Ⅱ)過點C作CP⊥C1D于P,連接AP,則AC⊥平面DCC1D1 , 從而∠CPA是二面角A﹣C1D﹣C的平面角,由此能求出二面角A﹣C1D﹣C的平面角的余弦值.
【考點精析】認真審題,首先需要了解直線與平面垂直的判定(一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AD為圓O的直徑,直線BA與圓O相切于點A,直線OB與弦AC垂直并相交于點G,與弧AC相交于M,連接DC,AB=10,AC=12.
(1)求證:BADC=GCAD;
(2)求BM.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系xOy中,曲線C的參數(shù)方程為 為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+ )=2 .
(1)求曲線C在極坐標系中的方程;
(2)求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為拋物線的焦點,過點的直線與交于、兩點,的準線與軸的交點為,動點滿足.
(1)求點的軌跡方程;
(2)當四邊形的面積最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先把函數(shù)y=sin(x+φ)的圖象上個點的橫坐標縮短為原來的 (縱坐標不變),再向右平移 個單位,所得函數(shù)關于y軸對稱,則φ的值可以是( )
A.
B.
C.-
D.-
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+2= ,且a1=1,a2=2.
(1)求a3﹣a6+a9﹣a12+a15的值;
(2)設數(shù)列{an}的前n項和為Sn , 當Sn>2017時,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com