【題目】已知直線的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,橢圓的極坐標方程為.
(1)求直線的普通方程(寫成一般式)和橢圓的直角坐標方程(寫成標準方程);
(2)若直線與橢圓相交于,兩點,且與軸相交于點,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】某中學為了解高二年級中華傳統(tǒng)文化經典閱讀的整體情況,從高二年級隨機抽取10名學生進行了兩輪測試,并把兩輪測試成績的平均分作為該名學生的考核成績.記錄的數(shù)據(jù)如下:
1號 | 2號 | 3號 | 4號 | 5號 | 6號 | 7號 | 8號 | 9號 | 10號 | |
第一輪測試成績 | 96 | 89 | 88 | 88 | 92 | 90 | 87 | 90 | 92 | 90 |
第二輪測試成績 | 90 | 90 | 90 | 88 | 88 | 87 | 96 | 92 | 89 | 92 |
(Ⅰ)從該校高二年級隨機選取一名學生,試估計這名學生考核成績大于90 分的概率;
(Ⅱ)從考核成績大于90分的學生中再隨機抽取兩名同學,求這兩名同學兩輪測試成績均大于等于90分的概率;
(Ⅲ)記抽取的10名學生第一輪測試的平均數(shù)和方差分別為,,考核成績的平均數(shù)和方差分別為,,試比較與, 與的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.
(1)直線l與曲線C是否有公共點?并說明理由;
(2)若直線l與兩坐標軸的交點為A,B,點P是曲線C上的一點,求△PAB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,a5=8,a10=23.
(1)令,證明:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{nbn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中.
(Ⅰ)試討論的單調性;
(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實數(shù),使得 ,試判斷與的大小關系并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市美團外賣配送員底薪是每月1800元,設每月配送單數(shù)為X,若,每單提成3元,若,每單提成4元,若,每單提成4.5元,餓了么外賣配送員底薪是每月2100元,設每月配送單數(shù)為Y,若,每單提成3元,若,每單提成4元,小想在美團外賣和餓了么外賣之間選擇一份配送員工作,他隨機調查了美團外賣配送員甲和餓了么外賣配送員乙在2019年4月份(30天)的送餐量數(shù)據(jù),如下表:
表1:美團外賣配送員甲送餐量統(tǒng)計
日送餐量x(單) | 13 | 14 | 16 | 17 | 18 | 20 |
天數(shù) | 2 | 6 | 12 | 6 | 2 | 2 |
表2:餓了么外賣配送員乙送餐量統(tǒng)計
日送餐量x(單) | 11 | 13 | 14 | 15 | 16 | 18 |
天數(shù) | 4 | 5 | 12 | 3 | 5 | 1 |
(1)設美團外賣配送員月工資為,餓了么外賣配送員月工資為,當時,比較 與的大小關系
(2)將4月份的日送餐量的頻率視為日送餐量的概率
(ⅰ)計算外賣配送員甲和乙每日送餐量的數(shù)學期望E(X)和E(Y)
(ⅱ)請利用所學的統(tǒng)計學知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學、外語3門統(tǒng)一高考成績和學生自主選擇的學業(yè)水平等級性考試科目共同構成.該省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調查,調查結果顯示樣本中有25人持不贊成意見.下面是根據(jù)樣本的調查結果繪制的等高條形圖.
(1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關”?
(2)利用分層抽樣從持“不贊成”意見家長中抽取5名參加學校交流活動,從中選派2名家長發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com