10、設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是(  )
分析:根據(jù)定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐個驗證即可找到答案.
解答:解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),
∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);
而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));
∴((f°g)•h)(x)≠((f•h)°(g•h))(x)
B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))
((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))
∴((f•g)°h)(x)=((f°h)•(g°h))(x)
C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))),
((f°h)°(g°h))(x)=f(h(g(h(x))))
∴((f°g)°h)(x)≠((f°h)°(g°h))(x);
D、((f•g)•h)(x)=f(x)g(x)h(x),
((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),
∴((f•g)•h)(x)≠((f•h)•(g•h))(x).
故選B.
點評:此題是個基礎(chǔ)題.考查學(xué)生分析解決問題的能力,和知識方法的遷移能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x),g(x)是實數(shù)集R上的奇函數(shù),{x|f(x)>0}={x|4<x<10},{x|g(x)>0}={x|2<x<5},則集合{x|f(x)g(x)>0}=
(4,5)∪(-5,-4)
(4,5)∪(-5,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-1在[a,b]上是“親密函數(shù)”,則b-a的最大值是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案