在△ABC中,已知內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且a2+b2=c2+ab.
(1)若
a
b
=
cosB
cosA
,且c=2,求△ABC的面積;
(2)已知向量
m
=(sinA,cosA),
n
=(cosB,-sinB),求|
m
-2
n
|的取值范圍.
分析:(1)根據(jù)余弦定理結(jié)合題中平方關(guān)系的等式,算出cosC=
1
2
,從而得出C=
π
3
.再由正弦定理結(jié)合題中比例式,化簡(jiǎn)可得sin2A=sin2B,因此△ABC是等邊三角形,不難得出△ABC的面積.
(2)首先計(jì)算
|m|
=
|n|
=1,且
m
n
=sin(A-B),代入(
m
-2
n
)
2
表達(dá)式并化簡(jiǎn),得(
m
-2
n
)
2
=5-4sin(
3
-2B)
,根據(jù)角B的取值范圍結(jié)合正弦函數(shù)的單調(diào)性,可得1≤(
m
-2
n
)2≤9
,兩邊開(kāi)方即得|
m
-2
n
|的取值范圍.
解答:解析:(1)在△ABC中,∵a2+b2=c2+ab,即c2=a2+b2-ab,
∴cosC=
a2+b2-c2
2ab
=
1
2
,結(jié)合C∈(0,π)得C=
π
3

又∵
a
b
=
cosB
cosA
,可得
sinA
sinB
=
cosB
cosA
,
∴sinAcosA=sinBcosB,即sin2A=sin2B,
∴A=B或A+B=
π
2

當(dāng)A+B=
π
2
時(shí),與C=
π
3
矛盾,故A=B,可得△ABC是等邊三角形.
∵c=2,∴△ABC的面積S△ABC=
3
4
×22=
3
…(6分)
(2)∵向量
m
=(sinA,cosA),
n
=(cosB,-),
|m|
=1,
|n|
=1,
m
n
=sinAcosB-cosAsinB=sin(A-B)
 因此,(
m
-2
n
)
2
=
m
2
+4
n
2
-4
m
n
=5-4sin(A-B)

∵A+B=
3
,得A=
3
-B
(
m
-2
n
)
2
=5-4sin[(
3
-B)-B]
=5-4sin(
3
-2B)

∵B∈(0,
3
),得
3
-2B∈(-
3
3
)…(10分)
∴當(dāng)
3
-2B=-
π
2
時(shí),sin(
3
-2B)
有最小值-1,此時(shí)5-4sin(
3
-2B)
有最大值9;
當(dāng)
3
-2B=
π
2
時(shí),sin(
3
-2B)
有最大值1,此時(shí)5-4sin(
3
-2B)
有最小值1.
可得1≤(
m
-2
n
)2≤9
,開(kāi)方得1≤|
m
-2
n
|
 
≤3

故|
m
-2
n
|的取值范圍[1,3].                             …(12分)
點(diǎn)評(píng):本題是一道三角函數(shù)綜合題,著重考查了平面向量數(shù)量積的坐標(biāo)表示、模的公式,以及運(yùn)用正余弦定理解三角形等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=9
,sinB=cosAsinC,又△ABC的面積等于6.
(1)求△ABC的三邊之長(zhǎng);
(2)設(shè)P是△ABC(含邊界)內(nèi)一點(diǎn),P到三邊AB、BC、CA的距離分別為d1、d2、d3,求d1+d2+d3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=9
.sinB=cosAsinC,面積S△ABC=6,
(1)求△ABC的三邊的長(zhǎng);
(2)設(shè)P是△ABC(含邊界)內(nèi)的一點(diǎn),P到三邊AC、BC、AB的距離分別是x、y、z.
①寫出x、y、z.所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識(shí)求出x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•江蘇模擬)在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面積S△ABC=6.
(Ⅰ)求△ABC的三邊的長(zhǎng);
(Ⅱ)設(shè)P是△ABC(含邊界)內(nèi)一點(diǎn),P到三邊AC,BC,AB的距離分別為x,y和z,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知
AB
AC
=2
3
,∠BAC=30°.
(Ⅰ)求△ABC的面積;
(Ⅱ)設(shè)M是△ABC內(nèi)一點(diǎn),定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y)
,求
1
x
+
4
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列命題:

①“x=一1是“x25x60的必要不充分條件;

②在△ABC中,已知;

③在邊長(zhǎng)為1的正方形ABCD內(nèi)隨機(jī)取一點(diǎn)M,MA1的概率為于

④若命題p是::對(duì)任意的,都有sinx1,為:存在,使得sinx > 1.

其中所有真命題的序號(hào)是____

 

查看答案和解析>>

同步練習(xí)冊(cè)答案