在某項體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為( )
A.90 | B.91 |
C.92 | D.93 |
科目:高中數(shù)學(xué) 來源: 題型:單選題
為了評價某個電視欄目的改革效果,在改革前后分別從某居民點抽取了1000位居民進行調(diào)查,經(jīng)過計算得K24.358,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是( )
A.有95%的人認為該欄日優(yōu)秀 |
B.有95%的人認為該欄目是否優(yōu)秀與改革有關(guān)系 |
C.有95%的把握認為電視欄目是否優(yōu)秀與改革有關(guān)系 |
D.沒有理由認為電視欄目是否優(yōu)秀與改革有關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
利用獨立性檢驗來考慮兩個分類變量X和Y是否有關(guān)系時,通過查閱下表來確定斷言“X和Y有關(guān)系”的可信度。如果k>5.024,那么就有把握認為“X和Y有關(guān)系”的百分比為( )
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在兩個變量y與x的回歸模型中,分別選擇了4個不同模型,它們的相關(guān)指數(shù)R2如下,其中擬和效果最好的模型是( )
A.模型1的相關(guān)指數(shù)R2為0.25 | B.模型2的相關(guān)指數(shù)R2為0.50 |
C.模型3的相關(guān)指數(shù)R2為0.98 | D.模型4的相關(guān)指數(shù)R2為0.80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在樣本的頻率分布直方圖中, 共有9個小長方形, 若第一個長方形的面積為0.02, 前五個與后五個長方形的面積分別成等差數(shù)列且公差互為相反數(shù),若樣本容量為160, 則中間一組(即第五組)的頻數(shù)為( )
A.12 | B.24 | C.36 | D.48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
從2003件產(chǎn)品中選取50件,若采用下面的方法選。合扔煤唵坞S機抽樣從2003件產(chǎn)品中剔除3件,剩下的2000件再按系統(tǒng)抽樣的方法抽取,則每件產(chǎn)品被選中的概率
A.不都相等 | B.都不相等 | C.都相等,且為 | D.都相等,且為 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
以下有關(guān)線性回歸分析的說法不正確的是( )
A.通過最小二乘法得到的線性回歸直線經(jīng)過樣本的中心 |
B.用最小二乘法求回歸直線方程,是尋求使最小的a,b的值 |
C.相關(guān)系數(shù)r越小,表明兩個變量相關(guān)性越弱 |
D.越接近1,表明回歸的效果越好 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在建立兩個變量與的回歸模型中,分別選擇了4個不同的模型,它們的相關(guān)指數(shù)如下,其中擬合最好的模型是( )
A.模型1的相關(guān)指數(shù)為0.98 | B.模型2的相關(guān)指數(shù)為0.80 |
C.模型3的相關(guān)指數(shù)為0.50 | D.模型4的相關(guān)指數(shù)為0.25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
一批產(chǎn)品抽50件測試,其凈重介于13克與19克之間,將測試結(jié)果按如下方式分成六組:第一組,凈重大于等于13克且小于14克;第二組,凈重大于等于14克且小于15克; 第六組,凈重大于等于18克且小于19克.如圖是按上述分組方法得到的頻率分布直方圖.設(shè)凈重小于17克的產(chǎn)品數(shù)占抽取數(shù)的百分比為,凈重大于等于15克且小于17克的產(chǎn)品數(shù)為,則從頻率分布直方圖中可分析出和分別為( )
A. | B. |
C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com