設(shè)F為拋物線C:y2=2px(p>0)的焦點,過F且與拋物線C對稱軸垂直的直線被拋物線C截得線段長為4.
(1)求拋物線C方程.
(2)設(shè)A、B為拋物線C上異于原點的兩點且滿足FA⊥FB,延長AF、BF分別拋物線C于點C、D.求:四邊形ABCD面積的最小值.

解:(1)由條件得2p=4,∴拋物線C的方程為y2=4x;
(2)兩直線垂直,焦點為(1,0),不妨設(shè)兩直線為:y=k(x-1)(k≠0)與ky=1-x
y=k(x-1)與拋物線方程聯(lián)立,可得k2 x2-2(k2+2)x+k2=0,
設(shè)A(x1,y1),C(x2,y2),則|x1-x2|==
∴弦長|AC|=|x1-x2|=
同理可得,弦長|BD|=4(k2+1)
∵兩條直線相互垂直,∴這個四邊形的面積S=|AC||BD|=8(+2)≥8(2+2)=32
當(dāng)且僅當(dāng)k=±1時等號成立,此時取到面積最小值為32.
分析:(1)根據(jù)過F且與拋物線C對稱軸垂直的直線被拋物線C截得線段長為4,可得2p=8,從而可得拋物線C的方程;
(2)設(shè)出直線方程與拋物線方程聯(lián)立,計算出|AC|、|BD|,可得S=|AC||BD|=8(+2),利用基本不等式,即可求四邊形ABCD面積的最小值.
點評:本題考查拋物線的標(biāo)準(zhǔn)方程,考查直線與拋物線的位置關(guān)系,考查四邊形面積的計算,考查基本不等式的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌二模)設(shè)F為拋物線C:y2=2px(p>0)的焦點,過F且與拋物線C對稱軸垂直的直線被拋物線C截得線段長為4.
(1)求拋物線C方程.
(2)設(shè)A、B為拋物線C上異于原點的兩點且滿足FA⊥FB,延長AF、BF分別拋物線C于點C、D.求:四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線C:y2=4x的焦點,過點P(-1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江)設(shè)F為拋物線C:y2=4x的焦點,過點P(-1,0)的直線l交拋物線C于兩點A,B,點Q為線段AB的中點,若|FQ|=2,則直線l的斜率等于
不存在
不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線C:y2=4x的焦點,過F的直線交拋物線C于A、B兩點,其中點A在x軸的下方,且滿足
AF
=4
FB
,則直線AB的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線C:y2=4x的焦點,過點F(−1,0)的直線l交拋物線C于A,B兩點,點Q為線段AB的中點.若|FQ|=2,則直線l的斜率等于       

查看答案和解析>>

同步練習(xí)冊答案