【題目】在△ABC中,已知角A,B,C所對(duì)的邊分別為a,b,c,且tanB=2,tanC=3.
(1)求角A的大小;
(2)若c=3,求b的長(zhǎng).
【答案】
(1)解:因?yàn)椋簍anB=2,tanC=3,tan(B+C)= = =﹣1,
因?yàn)椋篈=180°﹣B﹣C,
所以:tanA=tan(180°﹣(B+C))=﹣tan(B+C)=1
因?yàn)椋篈∈(0,π),
所以:A=
(2)解:因?yàn)椋篶=3,tanB=2,tanC=3.
所以:sinB= ,sinC= ,
所以由正弦定理可得:b= = =2
【解析】(1)利用兩角和的正切函數(shù)公式表示出tan(B+C),把tanB和tanC的值代入即可求出tan(B+C)的值,根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式得到tanA等于﹣tan(B+C),進(jìn)而得到tanA的值,結(jié)合A的范圍即可得解;(2)由已知利用同角三角函數(shù)基本關(guān)系式可求sinB,sinC的值,進(jìn)而利用正弦定理即可得解b的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用兩角和與差的正切公式,掌握兩角和與差的正切公式:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿(mǎn)足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(1)求證:MN∥平面BDE;
(2)求二面角C-EM-N的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={x|3+2x﹣x2>0},N={x|x>a},若MN,則實(shí)數(shù)a的取值范圍是( )
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某校5個(gè)學(xué)生期末考試數(shù)學(xué)成績(jī)和總分年級(jí)排名如下表:
學(xué)生的編號(hào) | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué) | 115 | 112 | 93 | 125 | 145 |
年級(jí)排名 | 250 | 300 | 450 | 70 | 10 |
(1)通過(guò)大量事實(shí)證明發(fā)現(xiàn),一個(gè)學(xué)生的數(shù)學(xué)成績(jī)和總分年級(jí)排名具有很強(qiáng)的線性相關(guān)關(guān)系,在上述表格是正確的前提下,用表示數(shù)學(xué)成績(jī),用表示年級(jí)排名,求與的回歸方程;(其中都取整數(shù))
(2)若在本次考試中,預(yù)計(jì)數(shù)學(xué)分?jǐn)?shù)為120分的學(xué)生年級(jí)排名大概是多少?
參考數(shù)據(jù)和公式:,其中,,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,已知a1= ,an+1= an﹣ ,n∈N* , 設(shè)Sn為{an}的前n項(xiàng)和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp , Sq , Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn).
(1)求異面直線AP,BM所成角的余弦值;
(2)點(diǎn)N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):
(1)求回歸直線方程.
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本)
參考數(shù)據(jù)如下:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三角形的邊長(zhǎng)為,將它沿高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體外接球表面積為
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com