【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實根”,其中, 為實常數(shù).

(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機數(shù), 為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;

(Ⅱ)若為區(qū)間[0,5]上的均勻隨機數(shù), 為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.

【答案】(Ⅰ);(Ⅱ).

【解析】試題分析:

(1)列出所有可能的事件,結(jié)合古典概型公式可得滿足題意的概率值為;

(2)利用題意畫出概率空間,結(jié)合幾何概型公式可得滿足題意的概率值為.

試題解析:

(Ⅰ)當a∈{0,1,2,3,4,5},b∈{0,1,2}時,共可以產(chǎn)生6×3=18個一元二次方程.

若事件A發(fā)生,則a 2-4b2≥0,即|a|≥2|b|. 又a≥0, b≥0,所以a≥2b.

從而數(shù)對(a,b)的取值為(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(4,0),(4,1),(4,2),(5,0),(5,1),(5,2),共12組值.

所以P(A)=.

(Ⅱ)據(jù)題意,試驗的全部結(jié)果所構(gòu)成的區(qū)域為D={(a,b)|0≤a≤5,0≤b≤2},構(gòu)成事件A的區(qū)域為A={(a,b)|0≤a≤5,0≤b≤2,a≥2b}.

在平面直角坐標系中畫出區(qū)域A、D,如圖,

其中區(qū)域D為矩形,其面積S(D)=5×2=10,

區(qū)域A為直角梯形,其面積S(A)=.

所以P(A)=.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)(x∈R)d的導(dǎo)函數(shù)為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當x≥0時,f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知 ,
(Ⅰ)求b和c;
(Ⅱ)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生在上學路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是,遇到紅燈時停留的時間都是2min.

1)求這名學生在上學路上到第三個路口時首次遇到紅燈的概率;

2)這名學生在上學路上因遇到紅燈停留的總時間至多是4min的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定1,23,4表示命中,5,6,78,9,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),且的導(dǎo)函數(shù),則( )

A. 24 B. -24 C. 10 D. -10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)從6名同學中選4名同學組成一個代表隊,參加4×400米接力比賽,問有多少種參賽方案?

(2)從6名同學中選4名同學參加場外啦啦隊,問有多少種選法?

(3) 4名同學每人可從跳高、跳遠、短跑三個項目中,任選一項參加比賽,問有多少種參賽方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南宋數(shù)學家秦九韶早在《數(shù)書九章》中就獨立創(chuàng)造了已知三角形三邊求其面積的公式:“以小斜冪并大斜冪,減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減之,以四約之,為實,一為從隅,開方得積.”(即:S= ,a>b>c),并舉例“問沙田一段,有三斜(邊),其小斜一十三里,中斜一十四里,大斜一十五里,欲知為田幾何?”則該三角形田面積為

A. 82平方里 B. 84平方里

C. 85平方里 D. 83平方里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓E: +y2=1(a>1)的右焦點為F,右頂點為A,已知 ,其中O為原點,e為橢圓的離心率.
(Ⅰ)求a的值;
(Ⅱ)動直線l過點N(﹣2,0),l與橢圓E交于P,Q兩點,求△OPQ面積的最大值.

查看答案和解析>>

同步練習冊答案