【題目】已知數列{an}的前n項和為Sn , 且a1=1,an+1= 若S3n≤λ3n﹣1恒成立,則實數λ的取值范圍為 .
【答案】[14,+∞)
【解析】解:∵a1=1,an+1= , 可得:a3n﹣1=a3n﹣2+3,a3n=a3n﹣1+3,可得a3n﹣2+a3n﹣1+a3n=3a3n﹣2+9.
a3n+1=a3n=a3n﹣1+3=a3n﹣2+6,又a1=1,
∴a3n﹣2=1+6(n﹣1)=6n﹣5.
∴S3n=(a1+a2+a3)+…+(a3n﹣2+a3n﹣1+a3n)
=3(a1+a4+…+a3n﹣2)+9n
=3× +9n
=9n2+3n.
S3n≤λ3n﹣1 , 即9n2+3n≤λ3n﹣1 , ∴λ≥ .
設 =cn , 則cn+1﹣cn= ﹣ = .
當n=1時,3n2﹣2n﹣2<0,即c1<c2;
當n≥2時,3n2﹣2n﹣2>0,可得:c2>c3>c4>…>cn .
因此(cn)max=c2=14.
∴λ≥14.
所以答案是:[14,+∞).
【考點精析】解答此題的關鍵在于理解數列的通項公式的相關知識,掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)若函數f(x)有兩個零點x1 , x2(1)求滿足條件的最小正整數a的值;
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題計結果如下圖表所示:
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinωx﹣ cosωx(ω>0),將函數y=|f(x)|的圖象向左平移 個單位長度后關于y軸對稱,則當ω取最小值時,g(x)=cos(ωx+ )的單調遞減區(qū)間為( )
A.[﹣ + , + ](k∈Z)
B.[﹣ + , + ](k∈Z)
C.[﹣ + , + ](k∈Z)
D.[﹣ + , + ](k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高二某班共有20名男生,在一次體驗中這20名男生被平均分成兩個小組,第一組和第二組男生的身高(單位: )的莖葉圖如下:
(1)根據莖葉圖,分別寫出兩組學生身高的中位數;
(2)從該班身高超過的7名男生中隨機選出2名男生參加;@球隊集訓,求這2名男生至少有1人來自第二組的概率;
(3)在兩組身高位于(單位: )的男生中各隨機選出2人,設這4人中身高位于(單位: )的人數為,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos4x+sin2x,下列結論中錯誤的是( )
A. f(x)是偶函數
B. 函數f(x)最小值為
C. 是函數f(x)的一個周期
D. 函數f(x)在內是減函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中裝有偶數個球,其中紅球、黑球各占一半.甲、乙、丙是三個空盒.每次從袋中任意取出兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復上述過程,直到袋中所有球都被放入盒中,則( )
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中紅球與丙盒中黑球一樣多
C.乙盒中紅球不多于丙盒中紅球
D.乙盒中黑球與丙盒中紅球一樣多
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com