已知函數(shù),在定義域[-2,2]上表示的曲線過原點,且在x=±1處的切線斜率均為.有以下命題:
①是奇函數(shù);②若在內(nèi)遞減,則的最大值為4;③的最大值為,最小值為,則; ④若對, 恒成立,則的最大值為2.其中正確命題的序號為————
①③
【解析】解:∵f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過原點,∴f(0)=0∴c=0∵f′(x)=3x2+2ax+b,且在x=±1處的切線斜率均為-1.∴f′(1)=f′(-1)=-1
3+2a+b=-1和3-2a+b=-1,解可得b=-4,a=0∴f(x)=x3-4x,f′(x)=3x2-4
①∵f(-x)=-x3+4x=-f(x),即f(x)是奇函數(shù);①正確
②由f′(x)≥0得單調(diào)區(qū)間進而得到結(jié)論。
③由奇函數(shù)的關(guān)于原點對稱可知,最大值與最小值互為相反數(shù),f(x)的最大值為M,最小值為m,則M+m=0;③正確
④若對∀x∈[-2,2],由于f′(x)=3x2-4∈[-4,8],則k≤f′(x)恒成立,則k≤4,則k的最大值為-4.④錯誤
正確命題的序號為①③
科目:高中數(shù)學 來源:2011屆北京市昌平區(qū)高三考模擬考試數(shù)學試卷(文科) 題型:解答題
已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若,是數(shù)列的前項和.
(I)求數(shù)列的通項公式;
(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);
(Ⅲ)設(shè)(且),使不等式
恒成立,求正整數(shù)的最大值
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年山東省濰坊三縣高三階段性教學質(zhì)量檢測數(shù)學理卷 題型:選擇題
已知函數(shù),在定義域[-2,2]上表示的曲線過原點,且在x=±1處的切線斜率均為.有以下命題:
①是奇函數(shù);②若在內(nèi)遞減,則的最大值為4;③的最大值為,最小值為,則; ④若對,恒成立,則的最大值為2.其中正確命題的個數(shù)為
A .1個 B. 2個 C .3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市昌平區(qū)高三考模擬考試數(shù)學試卷(文科) 題型:解答題
已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若,是數(shù)列的前項和.
(I)求數(shù)列的通項公式;
(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);
(Ⅲ)設(shè)(且),使不等式
恒成立,求正整數(shù)的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若,是數(shù)列的前項和.
(I)求數(shù)列的通項公式;
(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);
(Ⅲ)設(shè)(且),使不等式
恒成立,求正整數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com