【題目】20191212日我國出現(xiàn)了新型冠狀病毒所感染的肺炎,新型冠狀病毒的傳染性極強.下圖是2020126號到217號全國/湖北/非湖北新增新型冠狀病毒感染確診病例對比圖,根據(jù)圖象下列判斷錯誤的是(

A.該時段非湖北新增感染確診病例比湖北少

B.全國新增感染確診病例平均數(shù)先增后減

C.2.12全國新增感染確診病例明顯增加,主要是由湖北引起的

D.2.12全國新增感染確診病例數(shù)突然猛增,不會影響該段時期全國新增病例數(shù)的中位數(shù)

【答案】B

【解析】

根據(jù)圖象進行分析即可得解.

由圖可知A、C正確,2.12之前平均數(shù)先增后減,但2.12新增病例數(shù)突然猛增,使得平均數(shù)也突然增大,但不會影響中位數(shù),選項B錯誤,D正確.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如表:

x

1

2

3

4

y

1

m

n

4

如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對m賦了三個值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,對應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯誤的是(

參考公式:線性回歸方程中,其中,.相關(guān)系數(shù)

A.三條回歸直線有共同交點B.相關(guān)系數(shù)中,最大

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點,點是曲線上的動點, 的中點.

(1)求點的軌跡的直角坐標(biāo)方程;

(2)已知直線軸的交點為,與曲線的交點為,若的中點為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是邊長為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,總有,求的最小值;

2)對于中任意恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】時至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對的一項課題.某市號召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來天天開車上班的王先生積極響應(yīng)政府號召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用一次性拋擲6枚均勻硬幣的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.

1)求王先生前三天騎自行車上班的天數(shù)X的分布列;

2)由條件概率我們可以得到概率論中一個很重要公式——全概率公式.其特殊情況如下:如果事件相互對立并且,則對任一事件B.設(shè)表示事件n天王先生上班選擇的是騎自行車出行方式的概率.

①用表示;

②王先生的這種選擇隨機選擇出行方式有沒有積極響應(yīng)該市政府的號召,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車制造廠制造了某款汽車.為了了解汽車的使用情況,通過問卷的形式,隨機對50名客戶對該款汽車的喜愛情況進行調(diào)查,如圖1是汽車使用年限的調(diào)查頻率分布直方圖,如表2是該50名客戶對汽車的喜愛情況.

2

不喜歡該款汽車

喜歡該款汽車

總計

女士

11

男士

23

30

總計

1)將表2補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為是否喜歡該款汽車與性別有關(guān);

2)根據(jù)圖中的數(shù)據(jù),甲說:中位數(shù)在組內(nèi);乙說:平均數(shù)大于中位數(shù);丙說:中位數(shù)和平均數(shù)一樣,針對三位同學(xué)的說法,你認(rèn)為哪種說法合理,給出說明.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.

方案:將每個人的血分別化驗,這時需要驗1000次.

方案:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.

假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.

1)設(shè)方案中,某組個人的每個人的血化驗次數(shù)為,求的分布列;

2)設(shè),試比較方案中,分別取2,34時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.

)若花店一天購進17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.

)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

查看答案和解析>>

同步練習(xí)冊答案