(2008•佛山二模)若z=sinθ-
1
2
+icosθ是純虛數(shù),則tanθ的值為( 。
分析:根據(jù)純虛數(shù)的條件列出方程組,求出sinθ的值,再由平方關(guān)系和商的關(guān)系求出cosθ和tanθ.
解答:解:∵z=sinθ-
1
2
+icosθ是純虛數(shù),∴
sinθ-
1
2
=0
cosθ≠0
,
解得sinθ=
1
2
,則cosθ=±
1-sin2θ
=±
3
2
,
則tanθ=
sinθ
cosθ
=±
3
3
,
故選D.
點(diǎn)評(píng):本題考查了純虛數(shù)的定義,以及同角三角函數(shù)的基本關(guān)系的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的圖象上一個(gè)最高點(diǎn)的坐標(biāo)為(
π
12
,3)
,與之相鄰的一個(gè)最低點(diǎn)的坐標(biāo)為(
12
,-1)

(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)求f(x)在x=
π
6
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)已知函數(shù)f(x)的自變量的取值區(qū)間為A,若其值域區(qū)間也為A,則稱A為f(x)的保值區(qū)間.
(1)求函數(shù)f(x)=x2形如[n,+∞)(n∈R)的保值區(qū)間;
(2)函數(shù)g(x)=|1-
1x
|(x>0)
是否存在形如[a,b](a<b)的保值區(qū)間?若存在,求出實(shí)數(shù)a,b的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)已知正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,其中a1≠a2,am、ak、ah都是數(shù)列{an}中滿足ah-ak=ak-am的任意項(xiàng).
(Ⅰ)證明:m+h=2k;
(Ⅱ)證明:Sm•Sh≤Sk2;
(III)若
Sm
Sk
、
Sh
也成等差數(shù)列,且a1=2,求數(shù)列{
1
Sn-S1
}(n∈N*,n≥3)
的前n項(xiàng)和Tn
5
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)在△ABC中,若
AC
BC
=1
,
AB
BC
=-2
,則|
BC
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•佛山二模)已知A為xOy平面內(nèi)的一個(gè)區(qū)域.
命題甲:點(diǎn)(a,b)∈{(x,y)|
0≤x≤π
0≤y≤sinx
;命題乙:點(diǎn)(a,b)∈A.如果甲是乙的充分條件,那么區(qū)域A的面積的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案