已知拋物線和直線沒有公共點(其中、為常數(shù)),動點是直線上的任意一點,過點引拋物線的兩條切線,切點分別為、,且直線恒過點.
(1)求拋物線的方程;
(2)已知點為原點,連結(jié)交拋物線于、兩點,
證明:
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)
已知橢圓C:(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓中心在坐標原點,是它的兩個頂點,直線與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線的焦點,
離心率等于.直線與橢圓C交于兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點是否可以為的垂心?若可以,求出直線的方程;
若不可以,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
在極坐標系中,以極點為坐標原點,極軸為x軸正半軸,建立直角坐標系,點M(2,)的直角坐標是( )
A.(2,1) | B.(,1) | C.(1,) | D.(1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(18分)已知橢圓C:,在曲線C上是否存在不同兩點A、B關(guān)于直線(m為常數(shù))對稱?若存在,求出滿足的條件;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com