已知數(shù)列an,bn,cn滿足(an+1-an)(bn+1-bn)=cn(n∈N*)
(1)設(shè)cn=3n+6,an是公差為3的等差數(shù)列.當(dāng)b1=1時(shí),求b2,b3的值;
(2)設(shè)cn=n3,an=n2-8n求正整數(shù)k,使得一切n∈N*均有bn≥bk
分析:(1)先確定bn+1-bn=n+2,由b1=1,迭代可得b2,b3的值;
(2)先確定bn+1-bn=
n3
2n-7
,由bn+1-bn>0,解得n≥4,由bn+1-bn<0,解得n≤3,由此可得結(jié)論.
解答:解:(1)∵cn=3n+6,an是公差為3的等差數(shù)列.
則由(an+1-an)(bn+1-bn)=cn可得3(bn+1-bn)=3n+6
即bn+1-bn=n+2
又∵b1=1
∴當(dāng)n=1時(shí),b2-b1=3,即b2=4
當(dāng)n=2時(shí),b3-b2=5,即b2=9
(2)∵cn=n3,an=n2-8n
則由(an+1-an)(bn+1-bn)=cn可得{[(n+1)2-8(n+1)]-(n2-8n)}(bn+1-bn)=n3,
∴bn+1-bn=
n3
2n-7

由bn+1-bn>0,解得n≥4,即:b4<b5<b6<…
由bn+1-bn<0,解得n≤3,即:b1>b2>b3>b4
故k=4,使得對(duì)一切n∈N*,均有bn≥bk
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的求和,考查恒成立問題,確定數(shù)列通項(xiàng)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an,bn,xn滿足a1=b1=2,an+1=bn+1+4bn,bn+1=an+bnxn=
an
bn

(1)填空:當(dāng)n≥2時(shí),xn
 
1.(填>,=,<中一個(gè))
(2)求證:xn+1與xn中一個(gè)比
5
大,另一個(gè)比
5
小,并指出xn+1與xn中哪一個(gè)更接近于
5

(3)若數(shù)列{|xn-
5
|}
的前n項(xiàng)和為Sn,求證:Sn
5
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an、bn中,對(duì)任何正整數(shù)n都有:a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.
(1)若數(shù)列an是首項(xiàng)和公差都是1的等差數(shù)列,求證:數(shù)列bn是等比數(shù)列;
(2)若數(shù)列bn是等比數(shù)列,數(shù)列an是否是等差數(shù)列,若是請(qǐng)求出通項(xiàng)公式,若不是請(qǐng)說明理由;
(3)若數(shù)列an是等差數(shù)列,數(shù)列bn是等比數(shù)列,求證:
n
i=1
1
aibi
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an和bn滿足:a1=λ,an+1=
23
an+n-4
,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)試判斷數(shù)列an是否可能為等比數(shù)列,并證明你的結(jié)論;
(2)求數(shù)列bn的通項(xiàng)公式;
(3)設(shè)a>0,Sn為數(shù)列bn的前n項(xiàng)和,如果對(duì)于任意正整數(shù)n,總存在實(shí)數(shù)λ,使得不等式a<Sn<a+1成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an,bn,滿足a1=2,2an=1+anan+1,bn=an-1(bn≠0).
(I)求證數(shù)列{
1bn
}
是等差數(shù)列,并求數(shù)列an的通項(xiàng)公式;
(II)令Cn=bnbn+1,Sn為數(shù)列Cn的前n項(xiàng)和,求證:Sn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案