選修4-1:幾何證明選講
如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,
求證:BE•BF=BC•BD.

【答案】分析:證法一做出輔助線,根據(jù)兩條線平行,同位角相等,得到兩個角相等,在根據(jù)同弧所對的圓周角等于弦切角,得到兩個三角形相似,得到對應(yīng)邊成比例.
證法二,做出輔助線,根據(jù)直徑所對的圓周角是一個直角,根據(jù)射影定理得到AB2=BC•BD,AB2=BE•BF,根據(jù)等量代換得到結(jié)論.
解答:證明:
證法一:連接CE,過B作⊙O的切線BG,則BG∥AD
∴∠GBC=∠FDB,又∠GBC=∠CEB
∴∠CEB=∠FDB
又∠CBE是△BCE和△BDF的公共角
∴△BCE∽△BDF∴,
即BE•BF=BC•BD
證法二:連續(xù)AC、AE,∵AB是直徑,AC是切線
∴AB⊥AD,AC⊥BD,AE⊥BF
由射線定理有AB2=BC•BD,AB2=BE•BF
∴BE•BF=BC•BD
點評:本題考查平面幾何的有關(guān)證明,是一個基礎(chǔ)題,這種題目解題的關(guān)鍵是看清要證明的四條線段之間的位置關(guān)系,得到結(jié)論.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點A,D為PA的中點,
過點D引割線交⊙O于B,C兩點,求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使得CD=AC,連結(jié)AD交圓O于點E,連結(jié)BE與AC交于點F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習冊答案