【題目】已知函數(shù)
(1)若對任意的,恒成立,求實數(shù)的取值范圍;
(2)若的最小值為,求實數(shù)的值;
(3)若對任意實數(shù)、、,均存在以、、為三邊邊長的三角形,求實數(shù)的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)問題等價于4x+k2x+1>0恒成立,分離出參數(shù)k后轉(zhuǎn)化為求函數(shù)的最值問題即可;
(2),令,則,分k>1,k=1,k<1三種情況進(jìn)行討論求出f(x)的最小值,令其為﹣3即可解得k值;
(3)由題意得f(x1)+f(x2)>f(x3)對任意x1,x2,x3∈R恒成立,當(dāng)k=1時易判斷;當(dāng)k>1,k<1時轉(zhuǎn)化為函數(shù)的最值問題解決即可,借助(2)問結(jié)論易求函數(shù)的最值.
(1)因為4x+2x+1>0,所以f(x)>0恒成立,等價于4x+k2x+1>0恒成立,即k>﹣2x﹣2﹣x恒成立,
因為﹣2x﹣2﹣x=﹣(2x+2﹣x)≤﹣2,當(dāng)且僅當(dāng)2x=2﹣x,即x=0時取等號,所以k>﹣2.
(2),令,則,
當(dāng)k>1時,無最小值,舍去;
當(dāng)k=1時,y=1,最小值不是﹣3,舍去;
當(dāng)k<1時,,最小值為,解得.
綜上所述,k=﹣11.
(3)由題意,f(x1)+f(x2)>f(x3)對任意x1,x2,x3∈R恒成立.
當(dāng)k>1時,因,且,故,即1<k≤4;
當(dāng)k=1時,f(x1)=f(x2)=f(x3)=1,滿足條件;
當(dāng)k<1時,,且,故,解得;
綜上所述,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中真命題是( )
(1)在的二項式展開式中,共有項有理項;
(2)若事件、滿足,,,則事件、是相互獨立事件;
(3)根據(jù)最近天某醫(yī)院新增疑似病例數(shù)據(jù),“總體均值為,總體方差為”,可以推測“最近天,該醫(yī)院每天新增疑似病例不超過人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是非零實常數(shù))滿足且方程有且僅有一個實數(shù)解.
(1)求的值
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍
(3)在直角坐標(biāo)系中,求定點到函數(shù)圖像上的任意一點的距離的最小值,并求取得最小值時的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上的所有點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的后得到曲線;以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)已知,設(shè)直線與曲線交于不同的、兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標(biāo)為,點M的極坐標(biāo)為,若直線l過點P,且傾斜角為,圓C以M點為圓心,4為半徑.
求直線l和圓C的極坐標(biāo)方程;
直線l與x軸y軸分別交于A,B兩點,Q為圓C上一動點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、.經(jīng)過點且傾斜角為的直線與橢圓交于、兩點(其中點在軸上方),的周長為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,把平面沿軸折起來,使軸正半軸和軸確定的半平面,與負(fù)半軸和軸所確定的半平面互相垂直.
①若,求異面直線和所成角的大;
②若折疊后的周長為,求的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,中國有三分之二的城市面臨“垃圾圍城”的窘境. 我國的垃圾處理多采用填埋的方式,占用上萬畝土地,并且嚴(yán)重污染環(huán)境. 垃圾分類把不易降解的物質(zhì)分出來,減輕了土地的嚴(yán)重侵蝕,減少了土地流失. 2020年5月1日起,北京市將實行生活垃圾分類,分類標(biāo)準(zhǔn)為廚余垃圾、可回收物、有害垃圾和其它垃圾四類 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既環(huán)保,又節(jié)約資源. 如:回收利用1噸廢紙可再造出0.8噸好紙,可以挽救17棵大樹,少用純堿240千克,降低造紙的污染排放75%,節(jié)省造紙能源消耗40%~50%.
現(xiàn)調(diào)查了北京市5個小區(qū)12月份的生活垃圾投放情況,其中可回收物中廢紙和塑料品的投放量如下表:
小區(qū) | 小區(qū) | 小區(qū) | 小區(qū) | 小區(qū) | |
廢紙投放量(噸) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(噸) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)從這5個小區(qū)中任取1個小區(qū),求該小區(qū)12月份的可回收物中,廢紙投放量超過5噸且塑料品投放量超過3.5噸的概率;
(Ⅱ)從這5個小區(qū)中任取2個小區(qū),記為12月份投放的廢紙可再造好紙超過4噸的小區(qū)個數(shù),求的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com