解關(guān)于x的不等式:kx2-2(k-1)x+k+2>0(k∈R).
考點:一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:分別看k=0時,原不等式為一元一次不等式直接求解.
k>
1
4
時,△<0,原不等式解集為空集,
k≤
1
4
,k≠0時,先求得一元二次方程的根,進而求得原不等式解集.
解答: 解:當k=0時,原不等式變?yōu)?x+2>0,解得x>-1
當k>
1
4
時,△=4(k-1)2-4k2-8k=-16k+4<0,不等式的解集為∅,
當k≤
1
4
,k≠0時,△=4(k-1)2-4k2-8k=-16k+4≥0,解得x>-(k-1)+
1-4k
,或x<-(k-1)-
1-4k
點評:本題主要考查了一元二次不等式的解法.注意不要忘了k=0的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列有關(guān)命題:
①命題p:?x∈R,x2+x-1<0,則¬p:?x∈R,使得x2+x-1≥0;
②命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”;
③若
1
a
1
b
<0,則a2>b2
④如果命題“¬(p∨q)”為假命題,則p,q中至少有一個為真命題.
其中錯誤命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先閱讀下列①、②兩個問題,再解決后面的(Ⅰ)、(Ⅱ)兩個小題:
①已知a1,a2∈R,且a1+a2=1,求證:a12+22
1
2

證明:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,則f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2x+a12+a22,因為對一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,從而得a12+a22
1
2

②同理可證若a1,a2,a3∈R,且a1+a2+a3=1,則a12+a22+a32
1
3

(Ⅰ)若a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述結(jié)論的推廣式;
(Ⅱ)參考上述證法,對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
x→0
ln(1+x)-x
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正項數(shù)列{an}的前n項和為Sn,向量
a
=(
Sn
,1),
b
=(an+1,2)(n∈N*)滿足
a
b

(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的通項公式為bn=
an
an+t
(t∈N*),若b1,b2,bm(m≥3,m∈N*)成等差數(shù)列,求t和m的值;
(3)如果等比數(shù)列{cn}滿足c1=a1,公比q滿足0<q<
1
2
,且對任意正整數(shù)k,ck-(ck+1+ck+2)仍是該數(shù)列中的某一項,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中的相鄰兩項a2k-1、a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k∈N*).
(Ⅰ)求a1,a3,a5,a7及寫出a2n(n∈N*且n≥4)(不必證明);
(Ⅱ)對于任意n∈N*且n≥4,猜想a2n與(2n)2的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+
a
x
-x,g(x)=alnx-f(x)+(a-1)x(其中a≥0)
(1)討論f(x)的單調(diào)性;
(2)若g(x)在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍;
(3)設(shè)函數(shù)h(x)=x(1-x+xg(x)),當a=0時,證明:對?x∈(0,+∞),恒有h(x)<ex-1(1+e-2)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-1)ex-ax2,其中a為常數(shù).
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,+∞)上為單調(diào)區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x2-1
+
x2-4
=
3x2-1
,則x=
 

查看答案和解析>>

同步練習(xí)冊答案